The major fat in the human diet is:
A. Cholesterol
esters
B. Phospholipids
C. Triacylglycerols
D. Free
fatty acids
C. Triacylglycerols
Triacylglycerols consist of three fatty acids esterified to
a:
A. Glycerol backbone
B. Sphingosine backbone
C.
Steroid nucleus
D. Glucose backbone
A. Glycerol backbone
The lipase secreted in the mouth is:
A. Pancreatic
lipase
B. Cholesterol esterase
C. Phospholipase A2
D.
Lingual lipase
D. Lingual lipase
The lipase secreted in the stomach is:
A. Lingual lipase
B.
Gastric lipase
C. Pancreatic lipase
D. Phospholipase A2
B. Gastric lipase
In the intestine, fats are emulsified by:
A. Bile salts
B.
Proteases
C. Bicarbonate
D. Intrinsic factor
A. Bile salts
Intestinal end products of triacylglycerol digestion are:
A.
Glycerol and cholesterol
B. Phosphatidylcholine and bile
C.
Ketone bodies and acetate
D. Free fatty acids, 2-monoacylglycerol
D. Free fatty acids, 2-monoacylglycerol
The intestinal hormone that stimulates gallbladder + pancreas
secretion is:
A. Secretin
B. Cholecystokinin
C.
Gastrin
D. Somatostatin
B. Cholecystokinin
Phospholipids are hydrolyzed in the intestinal lumen by:
A.
Pancreatic lipase
B. Cholesterol esterase
C. Phospholipase
A2
D. Pepsin
C. Phospholipase A2
Cholesterol esters are hydrolyzed in the intestine by:
A.
Cholesterol esterase
B. Phospholipase C
C. Lipoprotein
lipase
D. Acetylcholinesterase
A. Cholesterol esterase
Digestion products (FFA, cholesterol, etc.) form ____ with bile
acids:
A. Liposomes
B. Chylomicrons
C. Lacteals
D. Micelles
D. Micelles
Micelles promote lipid entry mainly by interacting with the:
A.
Brush border enzymes
B. Enterocyte membrane
C. Goblet cell
mucus layer
D. Tight junction proteins
B. Enterocyte membrane
FFA and 2-monoacylglycerol are packaged with ____ into
chylomicrons:
A. Apolipoprotein A-I
B. Apolipoprotein
B-100
C. Apolipoprotein B-48
D. Apolipoprotein(a)
C. Apolipoprotein B-48
Newly formed chylomicrons are secreted first into:
A.
Lymph
B. Portal vein
C. Hepatic sinusoids
D. Splenic circulation
A. Lymph
Intestinal lymph enters the bloodstream via the:
A. Cisterna
chyli
B. Inferior vena cava
C. Right lymphatic duct
D.
Thoracic duct
D. Thoracic duct
Chylomicrons receive which apoproteins from HDL?
A. ApoA-I and
ApoB-48
B. ApoC-II and ApoE
C. ApoB-100 and ApoA-II
D.
ApoE and ApoB-100
B. ApoC-II and ApoE
ApoC-II and ApoE acquisition converts chylomicrons into:
A. VLDL
particles
B. LDL particles
C. Mature form
D. Remnant form
C. Mature form
ApoC-II activates which enzyme?
A. Lipoprotein lipase
B.
Hormone-sensitive lipase
C. HMG-CoA reductase
D. Acetyl-CoA carboxylase
A. Lipoprotein lipase
Lipoprotein lipase is located primarily on:
A. Hepatocyte
canalicular membranes
B. Enterocyte apical membranes
C.
Lymphatic endothelial valves
D. Capillary endothelium, muscle/adipose
D. Capillary endothelium, muscle/adipose
LPL digestion of chylomicron triglycerides produces:
A.
Cholesterol and bile acids
B. Free fatty acids and
glycerol
C. Ketone bodies and lactate
D. Glucose and acetate
B. Free fatty acids and glycerol
Most released fatty acids enter nearby tissues for:
A. Bile acid
synthesis
B. Urea cycle activation
C. Energy use or
storage
D. DNA methylation
C. Energy use or storage
Chylomicron-derived glycerol is primarily:
A. Metabolized by the
liver
B. Stored in adipose tissue
C. Excreted unchanged in
urine
D. Converted to bile salts
A. Metabolized by the liver
After losing triglyceride, a chylomicron becomes:
A. HDL
particle
B. VLDL particle
C. LDL particle
D.
Chylomicron remnant
D. Chylomicron remnant
As triglyceride is removed, chylomicron density:
A. Decreases
markedly
B. Increases
C. Stays constant
D. Becomes zero
B. Increases
The lymph system is best described as:
A. Arterioles supplying
gut villi
B. Portal venous drainage network
C. Vessels
around interstitial spaces
D. Coronary venous return vessels
C. Vessels around interstitial spaces
Sympathetic-chain–like lipid delivery to tissues depends critically
on:
A. Capillary LPL activity
B. Gastric lipase
secretion
C. RBC membrane transport
D. Cortisol receptor binding
A. Capillary LPL activity
A child has severe hypertriglyceridemia after meals. Most likely
defect:
A. ApoA-I deficiency
B. ApoB-100 deficiency
C.
CETP deficiency
D. ApoC-II deficiency
D. ApoC-II deficiency
Failure to form chylomicrons in enterocytes most directly implicates
loss of:
A. ApoE
B. ApoC-II
C. ApoB-48
D. ApoA-II
C. ApoB-48
Thoracic duct obstruction would most directly impair:
A. Portal
glucose delivery
B. Chylomicron entry to bloodstream
C.
Hepatic urea production
D. Pancreatic enzyme secretion
B. Chylomicron entry to bloodstream
Lymph fluid is most similar in composition to:
A. Plasma
B. Urine
C. CSF
D. Bile
A. Plasma
Lymph differs from blood mainly because it lacks:
A.
Electrolytes
B. Cells
C. Water
D. Proteins
B. Cells
Icteric yellow discoloration from bilirubin accumulation is:
A.
Cholecystitis
B. Jaundice
C. Pancreatitis
D. Melena
B. Jaundice
Cholecystitis refers to:
A. Liver inflammation
B.
Pancreatic inflammation
C. Gallbladder inflammation
D.
Bile duct obstruction
C. Gallbladder inflammation
Amylase is produced only in:
A. Gastric glands and liver
B. Pancreas and duodenum
C. Salivary glands and pancreas
acini
D. Salivary ducts and colon
C. Salivary glands and pancreas acini
Elevated lipase levels diagnose:
A. Gastritis
B.
Pancreatitis
C. Cholangitis
D. Appendicitis
B. Pancreatitis
Lipases preferentially hydrolyze:
A. Aromatic fatty acids
B. Long-chain fatty acids
C. Very-long-chain fatty acids
D. Short/medium-chain fatty acids
D. Short/medium-chain fatty acids
Typical American diet calories from fat are about:
A. 18%
B. 25%
C. 38%
D. 50%
C. 38%
Recommended maximal fat intake is:
A. 10% of calories
B.
20% of calories
C. 30% of calories
D. 40% of calories
C. 30% of calories
Long-chain fatty acids predominate in:
A. Cow milk
B.
Breast milk
C. Pancreatic juice
D. Bile
B. Breast milk
Dominant long-chain fatty acids in breast milk include:
A.
Stearic, arachidonic, DHA
B. Palmitic, oleic, linoleic
C.
Lauric, capric, butyric
D. Myristic, stearic, palmitoleic
B. Palmitic, oleic, linoleic
Infant human milk fat is readily absorbed because:
A. Bile
salts are absent
B. Pancreatic lipase is high
C.
Lingual/gastric lipases compensate
D. Esterases are inactive
C. Lingual/gastric lipases compensate
Bile salts are best described as:
A. Fully hydrophobic
steroids
B. Amphipathic compounds
C. Purely hydrophilic
ions
D. Enzyme cofactors only
B. Amphipathic compounds
Bile salts act as detergents by:
A. Destroying fatty
acids
B. Binding to fat globules
C. Blocking
peristalsis
D. Activating pepsin
B. Binding to fat globules
Pancreatic lipase is secreted with ____ in response to CCK:
A.
Intrinsic factor
B. Secretin
C. Colipase
D. Elastase
C. Colipase
Secretin is released by the small intestine in response to:
A.
Fat entering jejunum
B. Protein in ileum
C. Acid entering
duodenum
D. Glucose in stomach
C. Acid entering duodenum
Secretin signals secretion of:
A. Bile acids
B.
Bicarbonate
C. Pepsinogen
D. Gastrin
B. Bicarbonate
Bicarbonate raises lumen pH optimal for intestinal enzymes to:
A. pH 2
B. pH 4
C. pH 6
D. pH 8
C. pH 6
Bile salts can inhibit pancreatic lipase by:
A. Destroying
colipase
B. Coating the substrate
C. Denaturing the
enzyme
D. Lowering pH strongly
B. Coating the substrate
Colipase enhances lipase function by:
A. Blocking enzyme active
site
B. Increasing bile salt coating
C. Relieving bile
salt inhibition
D. Converting lipase to esterase
C. Relieving bile salt inhibition
Pancreatic lipase cleaves triglycerides mainly at positions:
A.
1 and 3
B. 1 and 2
C. 2 and 3
D. Only position 2
A. 1 and 3
Hydrolysis at positions 1 and 3 of triglycerides yields
primarily:
A. Monoacylglycerol and FFAs
B. Glycerol and
cholesterol
C. Lysophospholipid and bile
D. Fatty alcohols
and ketones
A. Monoacylglycerol and FFAs
Enzymes that remove fatty acids from compounds are:
A.
Kinases
B. Ligases
C. Oxidases
D. Esterases
D. Esterases
Secretin stimulates bicarbonate release from:
A. Liver,
pancreas, intestinal cells
B. Colon and kidney
C. Spleen
and stomach
D. Pancreas acini only
A. Liver, pancreas, intestinal cells
Acute right upper quadrant pain + fever suggests:
A.
Cholecystitis
B. Pancreatitis
C. Appendicitis
D. Diverticulitis
A. Cholecystitis
Low pancreatic lipase in infants is partly offset by:
A. Pepsin
secretion
B. Lingual and gastric lipase
C. Salivary
amylase
D. Hepatic bile acids
B. Lingual and gastric lipase
Amphipathic bile salts contain:
A. Only hydrophobic
groups
B. Only hydrophilic groups
C. Hydrophobic and
hydrophilic parts
D. Only charged phosphate heads
C. Hydrophobic and hydrophilic parts
If bile salts are absent, dietary fat digestion mainly decreases due
to:
A. Loss of pancreatic amylase
B. Failure of
emulsification
C. Failure of lactase action
D. Excess bile inhibition
B. Failure of emulsification
Phospholipase A2 digestion produces:
A. Two free fatty
acids
B. Free fatty acid + lysophospholipid
C. Cholesterol
+ bile acids
D. Glycerol + triglycerides
B. Free fatty acid + lysophospholipid
Micelles form when bile salts reach:
A. 1–3 mM
B. 3–5
mM
C. 5–15 mM
D. 15–30 mM
C. 5–15 mM
Bile salts recirculate to the liver via:
A. Portal venous
shunt
B. Enterohepatic circulation
C. Lymphatic duct
system
D. Systemic arterial supply
B. Enterohepatic circulation
Short/medium-chain fatty acid absorption does NOT require:
A.
Bile salts
B. Water
C. Sodium
D. Glucose
A. Bile salts
Protein constituents of lipoproteins are:
A. Lipases
B.
Esterases
C. Apolipoproteins
D. Phospholipids
C. Apolipoproteins
Apolipoproteins are synthesized mainly on:
A. Smooth ER
B. Rough ER
C. Golgi membrane
D. Mitochondria
B. Rough ER
Steatorrhea can result from insufficient:
A. Gastric acid
secretion
B. Bile salt production/secretion
C. Salivary
amylase production
D. Renal bicarbonate loss
B. Bile salt production/secretion
Olestra is best described as:
A. Absorbable long-chain
triglyceride
B. Caloric fat emulsifier
C. Artificial
noncaloric fat substitute
D. Bile salt binding resin
C. Artificial noncaloric fat substitute
Olestra yields no calories because it is:
A. Rapidly oxidized
to ketones
B. Stored in adipose tissue
C. Hydrolyzed into
glucose
D. Excreted intact in feces
D. Excreted intact in feces
A common side effect of olestra is:
A. Constipation
B.
Bradycardia
C. Cramping and diarrhea
D. Hyperkalemia
C. Cramping and diarrhea
Chylomicrons float in plasma after centrifugation because they
are:
A. Most dense particles
B. Least dense
particles
C. Neutral density particles
D. High protein particles
B. Least dense particles
Chylomicrons are least dense because they have:
A. High
triacylglycerol content
B. High cholesterol content
C.
High phospholipid content
D. High protein content
A. High triacylglycerol content
Heparin dislodging LPL causes plasma:
A. Triglycerides to
increase
B. Triglycerides to decrease
C. HDL protein to
decrease
D. LDL to disappear
A. Triglycerides to increase
Chylomicrons appear in blood about:
A. 10–20 minutes
B.
1–2 hours
C. 4–6 hours
D. 12–24 hours
B. 1–2 hours
HDL contains the highest:
A. Triglyceride concentration
B. Cholesterol ester fraction
C. Protein concentration
D.
Phospholipid concentration
C. Protein concentration
HDL also has the lowest:
A. Protein concentration
B.
Triglyceride concentration
C. Cholesterol concentration
D.
Phosphate concentration
B. Triglyceride concentration
Chylomicron triglycerides are digested by:
A. Hormone-sensitive
lipase
B. Hepatic lipase
C. Lipoprotein lipase
D.
Gastric lipase
C. Lipoprotein lipase
LPL is bound to endothelial basement membranes via:
A. Myosin
filaments
B. Proteoglycans
C. Actin microtubules
D.
Collagen IV pores
A. Myosin filaments
LPL is produced primarily by:
A. Liver and brain cells
B.
Kidney and spleen cells
C. Adipose, muscle, mammary cells
D. Erythrocytes and platelets
C. Adipose, muscle, mammary cells
After a meal, LPL activity is highest in:
A. Adipose
tissue
B. Cardiac valves
C. Renal cortex
D. Skeletal bone
A. Adipose tissue
Adipose LPL synthesis is stimulated by:
A. Glucagon
B.
Epinephrine
C. Insulin
D. Cortisol
C. Insulin
A weight loss strategy targets inhibition of:
A. Bile salt
transport
B. Pancreatic lipase
C. Lingual lipase
D.
LPL at capillaries
B. Pancreatic lipase
Orlistat is a drug that inhibits:
A. Pancreatic lipase
B.
Cholesterol esterase
C. Phospholipase A2
D. Lipoprotein lipase
A. Pancreatic lipase
Orlistat is derived from lipostatin, a natural inhibitor from:
A. Viruses
B. Bacteria
C. Fungi
D. Helminths
B. Bacteria
Alcohol-induced pancreatitis can occur due to:
A. Gallstone in
cystic duct
B. Proteinaceous duct plugs
C. Excess
bicarbonate secretion
D. Low pancreatic enzyme levels
B. Proteinaceous duct plugs
Proteinaceous plugs cause pancreatic injury by:
A. Decreasing
enzyme synthesis
B. Back pressure and autodigestion
C.
Increasing insulin secretion
D. Blocking bile salt recycling
B. Back pressure and autodigestion
Steatorrhea from bile salt deficiency is most likely due to:
A.
Impaired micelle formation
B. Excess protein synthesis
C.
Excess glucose absorption
D. Enhanced pancreatic lipase
A. Impaired micelle formation
A patient can taste olestra but gains no calories because:
A.
It blocks insulin secretion
B. It is not metabolized
C. It
converts to ketones
D. It binds bile salts strongly
B. It is not metabolized
Intestinal lymph enters bloodstream via the:
A. Portal
vein
B. Hepatic vein
C. Right lymphatic duct
D.
Thoracic duct
D. Thoracic duct
Chylomicron assembly in enterocyte ER requires:
A. MTP
B.
LCAT
C. CETP
D. ApoA-I
A. MTP
Absent triglyceride transfer activity causes:
A. Tangier
disease
B. Abetalipoproteinemia
C. Familial
hypercholesterolemia
D. Type I hyperlipoproteinemia
B. Abetalipoproteinemia
MTP deficiency impairs assembly of:
A. LDL only
B. HDL
only
C. Chylomicrons and VLDL
D. VLDL and LDL
C. Chylomicrons and VLDL
A child with abetalipoproteinemia most likely has:
A.
Steatorrhea and vomiting
B. Jaundice and pruritus
C.
Hematemesis and melena
D. Polyuria and polydipsia
A. Steatorrhea and vomiting
Intestinal phospholipid digestion uses:
A. Pancreatic
lipase
B. Cholesterol esterase
C. Phospholipase A2
D.
Lingual lipase
C. Phospholipase A2
Chylomicron triglycerides are hydrolyzed by:
A. Gastric
lipase
B. Phospholipase A2
C. Cholesterol esterase
D. LPL
D. LPL
LPL action on chylomicrons yields:
A. Cholesterol and bile
salts
B. Fatty acids and glycerol
C. Ketones and
acetate
D. Glucose and lactate
B. Fatty acids and glycerol
Amylase is made only by:
A. Liver and bile ducts
B.
Salivary glands and pancreas
C. Stomach and duodenum
D.
Colon and ileum
B. Salivary glands and pancreas
Parotid swelling with high amylase suggests:
A.
Pancreatitis
B. Appendicitis
C. Cholecystitis
D. Mumps
D. Mumps
Pancreatic amylase is produced by:
A. Acinar cells
B. Islet
beta cells
C. Duct epithelial cells
D. Stellate cells
A. Acinar cells
Lingual/gastric lipases prefer hydrolyzing:
A. Very-long-chain
fatty acids
B. Odd-chain fatty acids
C. Short/medium-chain
fatty acids
D. Polyunsaturated fatty acids
C. Short/medium-chain fatty acids
Pancreatic lipase is co-secreted with:
A. Colipase
B.
Enteropeptidase
C. Intrinsic factor
D. Pepsinogen
A. Colipase
CCK release from intestine stimulates:
A. Secretin and
bicarbonate
B. Gastrin and acid secretion
C. Histamine
release from ECL
D. Lipase and colipase secretion
D. Lipase and colipase secretion
Bile salts inhibit pancreatic lipase by:
A. Lowering intestinal
pH
B. Denaturing lipase enzyme
C. Coating the substrate
surface
D. Blocking lipase gene transcription
C. Coating the substrate surface
Bile salts are reabsorbed mainly in:
A. Ileum
B.
Duodenum
C. Jejunum
D. Colon
A. Ileum
C4–C12 fatty acids can absorb without:
A. Micelles
B. Bile
salts
C. Water
D. Sodium
B. Bile salts
Protein components of lipoproteins are:
A.
Apolipoproteins
B. Triacylglycerols
C. Steroid
esters
D. Bile acids
A. Apolipoproteins
Heparin reduces LPL activity by:
A. Increasing ApoC-II
binding
B. Dislodging LPL from capillaries
C. Blocking LPL
gene expression
D. Enhancing LPL proteolysis
B. Dislodging LPL from capillaries
Heparin dislodging LPL causes plasma:
A. Triglycerides to
increase
B. Triglycerides to decrease
C. HDL protein to
decrease
D. LDL to disappear
A. Triglycerides to increase
A noncaloric fat substitute is:
A. Cholic acid
B.
Colipase
C. Lipostatin
D. Olestra
D. Olestra
Olestra allows fat taste but:
A. Raises amylase strongly
B.
Requires bile salts absorption
C. Adds no dietary fat
calories
D. Activates pancreatic lipase
C. Adds no dietary fat calories
Which statement best fits abetalipoproteinemia?
A. ApoE
deficiency impairs remnants
B. CETP mutation raises HDL
C.
MTP loss blocks chylomicrons
D. LCAT loss lowers HDL
C. MTP loss blocks chylomicrons
VLDL assembly fails in abetalipoproteinemia because:
A. LDL
receptors are absent
B. ApoA-I cannot form HDL
C. CETP
cannot exchange lipids
D. Hepatic MTP-dependent transfer fails
D. Hepatic MTP-dependent transfer fails
Loss of chylomicron formation causes:
A. Increased LDL
cholesterol
B. Lipid malabsorption with steatorrhea
C.
Hyperglycemia after meals
D. Respiratory alkalosis at rest
B. Lipid malabsorption with steatorrhea
LPL-mediated triglyceride removal mainly supports:
A. Fatty acid
uptake by tissues
B. Bile salt formation in liver
C. Glucose
entry into enterocytes
D. Protein digestion in lumen
A. Fatty acid uptake by tissues