Print Options

Font size:

← Back to notecard set|Easy Notecards home page

To print: Ctrl+PPrint as notecards

Phys 78

1.

During nephrectomy exposure, the surgeon identifies endocrine glands at the ___ pole of each kidney.
A. Superior pole
B. Inferior pole
C. Medial hilum
D. Lateral surface

A. Superior pole

2.

Each adrenal gland is composed of:
A. Capsule and cortex
B. Medulla only
C. Cortex only
D. Adrenal cortex and medulla

D. Adrenal cortex and medulla

3.

A patient with episodic palpitations has excess epinephrine/norepinephrine. Which adrenal region produces these?
A. Zona glomerulosa
B. Adrenal medulla
C. Zona fasciculata
D. Zona reticularis

B. Adrenal medulla

4.

A CT shows intact medulla but damaged cortex. Which hormone class is most reduced?
A. Catecholamines
B. Peptide hormones
C. Corticosteroids
D. Thyroid hormones

C. Corticosteroids

5.

Which pair correctly lists the two major adrenocortical hormone classes?
A. Mineralocorticoids and glucocorticoids
B. Catecholamines and steroids
C. Aldosterone and catecholamines
D. Insulin and glucagon

A. Mineralocorticoids and glucocorticoids

6.

The adrenal cortex also secretes small amounts of hormones with testosterone-like effects. These are:
A. Estrogenic hormones
B. Thyroid hormones
C. Progestin hormones
D. Androgenic hormones

D. Androgenic hormones

7.

A patient with hyperkalemia needs rapid electrolyte regulation. Which adrenocortical class chiefly regulates ECF Na+ and K+?
A. Glucocorticoids
B. Mineralocorticoids
C. Androgens
D. Estrogens

B. Mineralocorticoids

8.

A patient develops fasting hyperglycemia and muscle wasting patterns. Which hormone class most directly raises blood glucose and alters protein/fat metabolism?
A. Mineralocorticoids
B. Catecholamines
C. Glucocorticoids
D. Androgenic hormones

C. Glucocorticoids

9.

The principal mineralocorticoid and principal glucocorticoid, respectively, are:
A. Cortisol, aldosterone
B. DHEA, cortisol
C. Aldosterone, DHEA
D. Aldosterone, cortisol

D. Aldosterone, cortisol

10.

A thin cell layer just beneath the adrenal capsule (≈15% cortex) secretes:
A. Zona glomerulosa
B. Zona fasciculata
C. Zona reticularis
D. Adrenal medulla

A. Zona glomerulosa

11.

A patient on an ACE inhibitor has reduced signaling. Aldosterone secretion is normally stimulated by:
A. ACTH and cortisol
B. Sodium and glucose
C. Angiotensin II and potassium
D. Epinephrine and norepinephrine

C. Angiotensin II and potassium

12.

The middle, widest adrenal cortical zone (≈75% cortex) is:
A. Zona reticularis
B. Zona fasciculata
C. Zona glomerulosa
D. Adrenal medulla

B. Zona fasciculata

13.

A patient with high ACTH has increased cortisol plus adrenal androgens/estrogens. Which zone produces this trio?
A. Zona reticularis
B. Zona glomerulosa
C. Adrenal medulla
D. Zona fasciculata

D. Zona fasciculata

14.

Secretion of cortisol, adrenal androgens, and estrogens is primarily controlled by:
A. Potassium
B. Angiotensin II
C. ACTH
D. Sodium

C. ACTH

15.

The inner zone of the adrenal cortex is the:
A. Zona fasciculata
B. Zona reticularis
C. Zona glomerulosa
D. Adrenal medulla

B. Zona reticularis

16.

A steroid profile shows high DHEA and androstenedione with small estrogen output. Which zone fits best?
A. Zona reticularis
B. Zona fasciculata
C. Zona glomerulosa
D. Adrenal medulla

A. Zona reticularis

17.

LDL receptors on adrenocortical membranes cluster in specialized structures called:
A. Coated pits
B. Tight junctions
C. Desmosomes
D. Gap junctions

A. Coated pits

18.

After LDL binds, coated pits are internalized by:
A. Exocytosis
B. Endocytosis
C. Diffusion
D. Oxidation

B. Endocytosis

19.

ACTH increases adrenal steroid synthesis partly by:
A. Blocking LDL receptor recycling
B. Decreasing LDL receptor number
C. Increasing LDL receptors and enzymes
D. Inhibiting cholesterol release from LDL

C. Increasing LDL receptors and enzymes

20.

After cholesterol enters an adrenocortical cell, it is delivered to mitochondria and cleaved by:
A. Cholesterol desmolase
B. 11β-hydroxylase
C. Aldosterone synthase
D. 17α-hydroxylase

A. Cholesterol desmolase

21.

Cholesterol → pregnenolone via cholesterol desmolase is the:
A. Terminal step
B. Rate-limiting step
C. Coupling step
D. Storage step

B. Rate-limiting step

22.

Steps of adrenal cortical steroid synthesis occur mainly in:
A. Nucleus and Golgi
B. Cytosol only
C. Mitochondria and ER
D. Lysosomes only

C. Mitochondria and ER

23.

A steroid is 1/30 as potent as aldosterone and is secreted in very small quantities:
A. Cortisol
B. Deoxycorticosterone
C. Corticosterone
D. 9α-fluorocortisol

B. Deoxycorticosterone

24.

A hormone with slight mineralocorticoid activity is:
A. Corticosterone
B. Prednisone
C. Dexamethasone
D. Cortisone

A. Corticosterone

25.

A synthetic steroid slightly more potent than aldosterone is:
A. Cortisol
B. 9α-fluorocortisol
C. Deoxycorticosterone
D. Corticosterone

B. 9α-fluorocortisol

26.

Very slight mineralocorticoid activity but secreted in large quantity:
A. Aldosterone
B. Deoxycorticosterone
C. Cortisol
D. 9α-fluorocortisol

C. Cortisol

27.

The glucocorticoid responsible for ~95% of total glucocorticoid activity is:
A. Cortisol
B. Corticosterone
C. Cortisone
D. Prednisone

A. Cortisol

28.

About 4% of glucocorticoid activity, much less potent than cortisol:
A. Dexamethasone
B. Cortisone
C. Corticosterone
D. Methylprednisone

C. Corticosterone

29.

A steroid almost as potent as cortisol is:
A. Cortisone
B. Prednisone
C. Dexamethasone
D. Aldosterone

A. Cortisone

30.

A synthetic steroid ~4 times as potent as cortisol is:
A. Prednisone
B. Methylprednisone
C. Dexamethasone
D. Corticosterone

A. Prednisone

31.

A synthetic steroid ~5 times as potent as cortisol is:
A. Prednisone
B. Dexamethasone
C. Methylprednisone
D. Cortisone

C. Methylprednisone

32.

A synthetic steroid ~30 times as potent as cortisol is:
A. Methylprednisone
B. Dexamethasone
C. Prednisone
D. Cortisone

B. Dexamethasone

33.

Adrenocortical hormones circulate bound primarily to:
A. Platelets
B. Plasma proteins
C. RBC membranes
D. Albumin-free fraction only

B. Plasma proteins

34.

High cortisol protein binding slows cortisol:
A. Filtration by kidneys
B. Elimination from plasma
C. Synthesis in cortex
D. Transport into cells

B. Elimination from plasma

35.

Cortisol’s half-life is approximately:
A. 5 minutes
B. 20 minutes
C. 60–90 minutes
D. 6 hours

C. 60–90 minutes

36.

Aldosterone has a relatively ___ half-life of about ___.
A. short; 20 minutes
B. long; 20 minutes
C. short; 90 minutes
D. long; 90 minutes

A. short; 20 minutes

37.

Adrenocortical hormones are metabolized primarily in the:
A. Kidney
B. Liver
C. Lung
D. Spleen

B. Liver

38.

Adrenal steroids are degraded and conjugated to:
A. Sulfuric acid
B. Glucuronic acid
C. Hydrochloric acid
D. Carbonic acid

B. Glucuronic acid

39.

About 25% of steroid conjugates are excreted in:
A. Sweat then skin
B. Urine then bladder
C. Bile then feces
D. CSF then blood

C. Bile then feces

40.

Aldosterone blood concentration depends strongly on dietary:
A. Sodium and potassium
B. Calcium and phosphate
C. Iron and folate
D. Iodine and selenium

A. Sodium and potassium

41.

Total loss of adrenocortical secretion may cause death within days unless treated with extensive:
A. Salt therapy
B. Glucose infusion
C. Thyroxine therapy
D. Beta-blockade

A. Salt therapy

42.

In total adrenal cortical failure, survival can be supported by injections of:
A. Catecholamines
B. Mineralocorticoids
C. Calcitonin
D. Thyroxine

B. Mineralocorticoids

43.

Without mineralocorticoids, extracellular potassium concentration:
A. Falls rapidly
B. Remains unchanged
C. Rises
D. Cycles unpredictably

C. Rises

44.

Without mineralocorticoids, sodium and chloride are rapidly:
A. Retained
B. Lost
C. Converted to bicarbonate
D. Stored in bone

B. Lost

45.

Without mineralocorticoids, total extracellular volume and blood volume become:
A. Increased
B. Unchanged
C. Diluted
D. Greatly reduced

D. Greatly reduced

46.

Renal epithelial cells express 11β-HSD2 to:
A. Enhance cortisol mineralocorticoid effects
B. Prevent cortisol activating MR
C. Convert aldosterone into cortisol
D. Block aldosterone binding MR

B. Prevent cortisol activating MR

47.

Genetic deficiency of 11β-HSD2 causing cortisol mineralocorticoid effects is:
A. Cushing syndrome
B. Conn syndrome
C. Addison disease
D. Apparent mineralocorticoid excess

D. Apparent mineralocorticoid excess

48.

Ingestion of large amounts of ___ can cause AME by blocking 11β-HSD2.
A. Grapefruit
B. Licorice
C. Caffeine
D. Ethanol

B. Licorice

49.

Aldosterone ___ renal tubular sodium reabsorption and ___ potassium secretion.
A. decreases; decreases
B. increases; increases
C. decreases; increases
D. increases; decreases

B. increases; increases

50.

Because aldosterone increases Na+ reabsorption, it simultaneously increases secretion of:
A. Calcium
B. Hydrogen
C. Potassium
D. Bicarbonate

C. Potassium

51.

Aldosterone causes sodium to be ___ in ECF while increasing potassium loss in urine.
A. Excreted
B. Conserved
C. Oxidized
D. Chelated

B. Conserved

52.

ECF sodium concentration rises only slightly in hyperaldosteronism because Na+ reabsorption pulls in:
A. Glucose
B. Water
C. Phosphate
D. Urea

B. Water

53.

Which hormone enhances water reabsorption in distal and collecting tubules?
A. Aldosterone
B. Cortisol
C. ADH
D. ANP

C. ADH

54.

Increased arterial pressure increases renal Na+ and water excretion called:
A. Osmotic diuresis
B. Countercurrent multiplication
C. Pressure natriuresis/diuresis
D. Tubuloglomerular feedback

C. Pressure natriuresis/diuresis

55.

Normalization of Na+ and water excretion during high aldosterone via pressure mechanisms is:
A. Aldosterone escape
B. Mineralocorticoid resistance
C. Addison crisis
D. Conn crisis

A. Aldosterone escape

56.

When aldosterone secretion becomes zero, large amounts of sodium are lost in:
A. Sweat
B. Urine
C. Stool
D. Saliva

B. Urine

57.

Loss of sodium in urine during aldosterone absence ___ ECF volume.
A. Increases
B. Does not change
C. Decreases
D. Doubles

C. Decreases

58.

Excess aldosterone most classically causes:
A. Hyperkalemia
B. Hypokalemia
C. Hypercalcemia
D. Hypocalcemia

B. Hypokalemia

59.

Aldosterone deficiency most classically causes:
A. Hyperkalemia
B. Hypokalemia
C. Hypernatremia
D. Hypomagnesemia

A. Hyperkalemia

60.

Excess aldosterone increases tubular hydrogen secretion causing:
A. Acidosis
B. Alkalosis
C. Respiratory alkalosis
D. Lactic acidosis

B. Alkalosis

61.

Aldosterone stimulates sodium and potassium transport in:
A. Sweat and salivary glands
B. Sweat and pancreas
C. Saliva and thyroid
D. Liver and spleen

A. Sweat and salivary glands

62.

Aldosterone diffuses ___ into tubular epithelial cells.
A. Poorly
B. Slowly via carriers
C. Readily
D. Only by endocytosis

C. Readily

63.

In a principal cell, aldosterone binds a cytosolic protein with high stereospecificity. That protein is the:
A. Glucocorticoid receptor
B. Angiotensin II receptor
C. Mineralocorticoid receptor
D. ACTH receptor

C. Mineralocorticoid receptor

64.

After aldosterone binds its receptor, the complex enters the nucleus and most directly promotes formation of:
A. mRNA
B. cAMP
C. IP3
D. DAG

A. mRNA

65.

The aldosterone-induced transcript returns to cytoplasm and, with ribosomes, produces:
A. Steroid hormone
B. Second messenger
C. Glycogen polymer
D. Protein enzyme

D. Protein enzyme

66.

The principal basolateral driver of renal Na+/K+ exchange is:
A. Na+-H+ exchanger
B. Na+-K+ ATPase
C. NKCC cotransporter
D. ENaC channel

B. Na+-K+ ATPase

67.

Increased extracellular angiotensin II most strongly:
A. Decreases aldosterone output
B. Abolishes aldosterone output
C. Does not change output
D. Increases aldosterone output

D. Increases aldosterone output

68.

Increased extracellular sodium concentration will very slightly:
A. Increase aldosterone output
B. Decrease aldosterone output
C. Greatly increase aldosterone output
D. Not affect aldosterone output

B. Decrease aldosterone output

69.

A pituitary hormone is necessary for aldosterone synthesis but usually not rate-controlling. Which is it?
A. ADH
B. TSH
C. ACTH
D. GH

C. ACTH

70.

When RAAS is activated, aldosterone’s key renal effects are:
A. Excrete K, raise blood pressure
B. Excrete Na, lower blood pressure
C. Retain K, raise blood pressure
D. Retain water, lose sodium

A. Excrete K, raise blood pressure

71.

A patient starts an angiotensin II receptor blocker. Plasma aldosterone will:
A. Increase
B. Remain unchanged
C. Oscillate widely
D. Decrease

D. Decrease

72.

Cortisol most directly stimulates hepatic:
A. Glycolysis
B. Gluconeogenesis
C. Glycogenesis
D. Ketolysis

B. Gluconeogenesis

73.

Cortisol increases the hepatic components needed to convert amino acids into glucose, especially:
A. Transporters
B. Receptors
C. Enzymes
D. Ribosomes

C. Enzymes

74.

In prolonged fasting, cortisol shifts substrate availability by causing:
A. Storage of amino acids
B. Oxidation of amino acids
C. Sequestration in connective tissue
D. Mobilization from extrahepatic tissues

D. Mobilization from extrahepatic tissues

75.

Cortisol counteracts insulin’s suppression of hepatic gluconeogenesis; it:
A. Antagonizes insulin
B. Enhances insulin
C. Mimics insulin
D. Replaces insulin

A. Antagonizes insulin

76.

Cortisol causes a moderate ____ in glucose utilization by most cells.
A. Increase
B. No change
C. Decrease
D. Complete blockade

C. Decrease

77.

Reduced GLUT4 translocation to the cell membrane from cortisol leads to:
A. Hypoglycemia
B. Insulin resistance
C. Mineralocorticoid excess
D. Increased glucose sensitivity

B. Insulin resistance

78.

Sustained cortisol-induced hyperglycemia can produce:
A. Adrenal diabetes
B. Type 1 diabetes
C. Diabetes insipidus
D. Pancreatic failure

A. Adrenal diabetes

79.

Cortisol decreases ____ stores in essentially all cells except liver.
A. Glycogen
B. Triglyceride
C. Phosphate
D. Protein

D. Protein

80.

Cortisol’s net effect on liver and plasma proteins is:
A. Decreases both
B. Increases both
C. No net change
D. Denatures both

B. Increases both

81.

Cortisol ____ mobilization of fatty acids from adipose tissue.
A. Inhibits
B. Blocks
C. Promotes
D. Converts

C. Promotes

82.

Beyond mobilization, cortisol also directly tends to ____ fatty acid oxidation in cells.
A. Enhance
B. Suppress
C. Prevent
D. Randomize

A. Enhance

83.

Any major stress increases ____ secretion, which increases cortisol output.
A. TSH
B. ADH
C. GH
D. ACTH

D. ACTH

84.

After major surgery, a patient’s cortisol spikes. Which stimulus is classically associated with increased cortisol?
A. High dietary sodium
B. Hypercalcemia
C. Surgery
D. Increased sunlight exposure

C. Surgery

85.

A restrained lab animal develops high cortisol. This is best classified as:
A. Physiologic stressor
B. Primary thyroid failure
C. Mineralocorticoid excess
D. Paraneoplastic syndrome

A. Physiologic stressor

86.

Which exposure is a classic cortisol-raising trigger?
A. Low ambient light
B. High carbohydrate meal
C. Mild dehydration only
D. Intense heat or cold

D. Intense heat or cold

87.

A patient receives a norepinephrine injection during shock. This can increase cortisol as a:
A. Paracrine reflex
B. Stress-related trigger
C. Thyroid feedback effect
D. Renal compensation

B. Stress-related trigger

88.

Large doses of glucocorticoids can usually block inflammation and may reverse effects in:
A. Rheumatoid arthritis
B. Graves disease
C. Type 1 diabetes
D. Myxedema

A. Rheumatoid arthritis

89.

Cortisol’s anti-inflammatory effect includes stabilization of:
A. Nuclear pores
B. Tight junctions
C. Microtubules
D. Lysosomal membranes

D. Lysosomal membranes

90.

Cortisol blocks edema formation partly by decreasing:
A. Capillary permeability
B. Venous compliance
C. Lymphatic pumping
D. Erythrocyte rigidity

A. Capillary permeability

91.

Cortisol decreases leukocyte migration and phagocytosis partly by reducing:
A. Histamine and bradykinin
B. Prostaglandins and leukotrienes
C. Interferons and antibodies
D. Renin and angiotensin

B. Prostaglandins and leukotrienes

92.

Cortisol suppresses immunity primarily by decreasing:
A. Neutrophil degranulation
B. Monocyte differentiation
C. Lymphocyte reproduction
D. Platelet aggregation

C. Lymphocyte reproduction

93.

Cortisol attenuates fever mainly by reducing release of:
A. IL-1 from WBCs
B. IL-2 from T cells
C. TNF from endothelium
D. IFN-γ from NK cells

A. IL-1 from WBCs

94.

Cortisol’s effect on allergic inflammation is best described as:
A. Potentiates histamine release
B. Blocks allergic inflammatory response
C. Increases mast-cell numbers
D. Prolongs late-phase wheeze

B. Blocks allergic inflammatory response

95.

Cortisol also promotes:
A. Hemolysis
B. Necrosis
C. Calcification
D. Healing

D. Healing

96.

Lymphocytopenia or eosinopenia suggests overproduction of:
A. Aldosterone
B. ACTH
C. Cortisol
D. TSH

C. Cortisol

97.

Cortisol is lipid-_____ , enabling membrane passage.
A. soluble
B. charged
C. insoluble
D. anchored

A. soluble

98.

Inside the cell, cortisol binds its receptor in the:
A. Cytoplasm
B. Extracellular fluid
C. Nucleus
D. Mitochondria

A. Cytoplasm

99.

The cortisol–receptor complex regulates transcription by binding:
A. TATA boxes
B. Glucocorticoid response elements
C. Thyroid response elements
D. Estrogen response elements

B. Glucocorticoid response elements

100.

ACTH is best described as:
A. Tripeptide amide
B. Steroid hormone
C. 39–amino acid polypeptide
D. Catecholamine precursor

C. 39–amino acid polypeptide

101.

CRF-secreting neuron cell bodies are mainly in the:
A. Supraoptic nucleus
B. Paraventricular nucleus
C. Median eminence
D. Arcuate nucleus

B. Paraventricular nucleus

102.

ACTH activates which membrane enzyme to raise cAMP?
A. Phospholipase C
B. Guanylyl cyclase
C. Adenylyl cyclase
D. Tyrosine kinase

C. Adenylyl cyclase

103.

The most important ACTH-stimulated step listed is activation of:
A. Protein kinase A
B. 11β-HSD2
C. LDL endocytosis
D. Aldosterone synthase

A. Protein kinase A

104.

Protein kinase A activation most directly promotes cholesterol conversion to:
A. Cortisol
B. Pregnenolone
C. Aldosterone
D. Corticosterone

B. Pregnenolone

105.

Physiologic stress increases secretion of:
A. ACTH and cortisol
B. TSH and calcitonin
C. ADH and aldosterone
D. Renin and insulin

A. ACTH and cortisol

106.

Cortisol exerts direct negative feedback on:
A. Hypothalamus and anterior pituitary
B. Thyroid and parathyroids
C. Posterior pituitary and pineal
D. Adrenal medulla and kidney

A. Hypothalamus and anterior pituitary

107.

The precursor that yields ACTH, MSH, β-lipotropin, and β-endorphin is:
A. Angiotensinogen
B. Thyroglobulin
C. POMC
D. Albumin

C. POMC

108.

Primary adrenal cortical atrophy or injury with low adrenocortical hormones is:
A. Cushing syndrome
B. Addison’s disease
C. Conn syndrome
D. Graves disease

B. Addison’s disease

109.

Mineralocorticoid deficiency most directly causes:
A. ECF depletion → shock risk
B. RBC hemolysis → anemia
C. Hypercalcemia → tetany
D. SIADH → hyponatremia

A. ECF depletion → shock risk

110.

Glucocorticoid deficiency in Addison prevents between-meal glucose maintenance because it impairs:
A. Glycogenolysis
B. Ketogenesis
C. Gluconeogenesis
D. Lipolysis

C. Gluconeogenesis

111.

A key cause of Addison-associated mucocutaneous hyperpigmentation is increased:
A. Melanin
B. Bilirubin
C. Hemosiderin
D. Carotene

A. Melanin

112.

Standard chronic therapy for Addison disease is:
A. High-dose dexamethasone
B. Beta-blocker monotherapy
C. Aldosterone alone
D. Daily mineralocorticoids and glucocorticoids

D. Daily mineralocorticoids and glucocorticoids

113.

Severe stress-related debility requiring extra glucocorticoids in Addison is:
A. Thyroid storm
B. Addisonian crisis
C. Conn syndrome
D. Cushing syndrome

B. Addisonian crisis

114.

Hypersecretion by the adrenal cortex causing a complex cascade is:
A. Cushing syndrome
B. Addison disease
C. Graves disease
D. Hashimoto disease

A. Cushing syndrome

115.

Cushing syndrome due to excess pituitary ACTH is:
A. Conn syndrome
B. Addison disease
C. Cushing disease
D. Adrenogenital syndrome

C. Cushing disease

116.

The drug classically administered to differentiate ACTH-dependent vs ACTH-independent Cushing is:
A. Aldosterone
B. Cortisol
C. ACTH
D. Dexamethasone

D. Dexamethasone

117.

With very high-dose dexamethasone, which change can occur in many patients with Cushing disease?
A. Renin rises markedly
B. ACTH becomes suppressed
C. Cortisol rises further
D. Aldosterone becomes undetectable

B. ACTH becomes suppressed

118.

Iatrogenic Cushing syndrome can result from prolonged administration of:
A. Glucocorticoids
B. Mineralocorticoids
C. Thyroxine
D. Insulin

A. Glucocorticoids

119.

The classic facial appearance in Cushing syndrome is:
A. Butterfly rash
B. Masklike facies
C. Myxedematous facies
D. Moon face

D. Moon face

120.

About 80% of patients with Cushing syndrome develop:
A. Hypotension
B. Hypertension
C. Bradycardia
D. Syncope

B. Hypertension

121.

Cushing hypertension is largely attributed to:
A. Autoantibodies stimulating AT1 receptors
B. Catecholamine excess
C. Cortisol mineralocorticoid activity
D. Low aldosterone signaling

C. Cortisol mineralocorticoid activity

122.

Purplish striae in Cushing syndrome reflect depletion of:
A. Collagen depletion
B. Keratin excess
C. Elastin overgrowth
D. Melanin accumulation

A. Collagen depletion

123.

A correct treatment approach for Cushing syndrome includes:
A. Iodine ablation only
B. Beta-blocker only
C. Salt therapy only
D. Tumor removal or steroidogenesis blockade

D. Tumor removal or steroidogenesis blockade

124.

Among listed treatments, the “last resort” option is:
A. High-dose dexamethasone
B. Methimazole therapy
C. Adrenalectomy
D. Pheochromocytoma resection

C. Adrenalectomy

125.

A small zona glomerulosa tumor secreting large aldosterone is:
A. Primary aldosteronism
B. Addison disease
C. Cushing syndrome
D. Adrenogenital syndrome

A. Primary aldosteronism

126.

A diagnostic criterion for primary aldosteronism is:
A. Increased plasma renin
B. Increased TSH
C. Decreased cortisol
D. Decreased plasma renin

D. Decreased plasma renin

127.

Treatment for primary aldosteronism is best:
A. Levothyroxine replacement
B. Surgery or MR antagonist
C. Radioiodine ablation
D. Dopamine agonist therapy

B. Surgery or MR antagonist

128.

An adrenocortical tumor secreting excess androgens causing masculinization is:
A. Conn syndrome
B. Cushing disease
C. Adrenogenital syndrome
D. Addisonian crisis

C. Adrenogenital syndrome

129.

Adrenal cortex layers superficial → deep are:
A. Glomerulosa fasciculata reticularis
B. Fasciculata reticularis glomerulosa
C. Reticularis glomerulosa fasciculata
D. Medulla glomerulosa fasciculata

A. Glomerulosa fasciculata reticularis

130.

Which finding best supports primary adrenal insufficiency over secondary?
A. No ACTH present
B. Melanin pigmentation present
C. Moon face present
D. Hypertension present

B. Melanin pigmentation present

131.

A classic trigger for Addisonian crisis is:
A. High sodium diet
B. Cold adaptation
C. Exercise training
D. Infection or trauma stress

D. Infection or trauma stress

132.

A patient with Addison disease is especially prone to:
A. Hyperglycemia after meals
B. Hypertension after meals
C. Hypoglycemia between meals
D. Polycythemia between meals

C. Hypoglycemia between meals

133.

A patient has persistently high aldosterone, yet after several days their renal Na+/H2O excretion returns near baseline. This phenomenon is:
A. Mineralocorticoid resistance
B. Adrenal diabetes
C. Aldosterone escape
D. Apparent mineralocorticoid excess

C. Aldosterone escape

134.

The key driver of aldosterone escape is:
A. Increased BP → natriuresis/diuresis
B. Decreased ADH → water loss
C. Increased GFR → glucosuria
D. Decreased RAAS → low aldosterone

A. Increased BP → natriuresis/diuresis

135.

A patient with aldosterone deficiency is at greatest risk for:
A. Hypocalcemia and tetany
B. Metabolic alkalosis only
C. Hypernatremia and edema
D. Hyperkalemia with arrhythmias

D. Hyperkalemia with arrhythmias

136.

A patient with chronic watery diarrhea and low aldosterone most directly has impaired:
A. Gastric acid secretion
B. Intestinal sodium-water absorption
C. Pancreatic enzyme release
D. Hepatic bile acid synthesis

B. Intestinal sodium-water absorption

137.

In renal tubular epithelial cells, aldosterone initially binds its receptor in the:
A. Cytoplasm
B. Nucleus
C. Luminal membrane
D. Basolateral membrane

A. Cytoplasm

138.

After aldosterone binds its receptor, the complex:
A. Activates MAPK at membrane
B. Opens ENaC directly
C. Blocks potassium secretion
D. Translocates to nucleus, alters genes

D. Translocates to nucleus, alters genes

139.

In principal cells, the Na+-K+ ATPase is located on the:
A. Luminal membrane
B. Basolateral membrane
C. Nuclear envelope
D. Apical tight junctions

B. Basolateral membrane

140.

In principal cells, the epithelial Na+ channel is located on the:
A. Basolateral membrane
B. Mitochondrial membrane
C. Luminal membrane
D. Nuclear membrane

C. Luminal membrane

141.

The second messenger system listed for aldosterone is:
A. cAMP second messenger
B. IP3-DAG signaling
C. cGMP signaling
D. JAK-STAT pathway

A. cAMP second messenger

142.

The most potent regulators of aldosterone secretion are:
A. Sodium and chloride
B. ACTH and cortisol
C. ADH and osmolality
D. Potassium and RAAS

D. Potassium and RAAS

143.

When RAAS is activated, aldosterone helps restore homeostasis by:
A. Excreting sodium, lowering pressure
B. Excreting potassium, raising pressure
C. Retaining potassium, lowering pressure
D. Retaining water, lowering pressure

B. Excreting potassium, raising pressure

144.

During stress, cortisol raises blood glucose partly by inhibiting insulin via reduced:
A. Glycogen synthase activity
B. GLUT2 insertion in hepatocytes
C. GLUT4 translocation in muscle
D. Pyruvate kinase in erythrocytes

C. GLUT4 translocation in muscle

145.

In a prolonged stress response, cortisol increases blood glucose by:
A. Increasing gluconeogenesis and AA mobilization
B. Decreasing hepatic enzyme production
C. Increasing insulin-mediated glucose uptake
D. Blocking amino acid mobilization

A. Increasing gluconeogenesis and AA mobilization

146.

When cortisol inhibits insulin signaling, gluconeogenesis:
A. Becomes fully suppressed
B. Requires thyroid hormone first
C. Stops after meals only
D. Cannot be stopped, causing hyperglycemia

D. Cannot be stopped, causing hyperglycemia

147.

A patient on chronic high-dose glucocorticoids develops “adrenal diabetes.” Insulin therapy is often:
A. Curative at low doses
B. Ineffective due to resistance
C. Always contraindicated
D. Unnecessary due to hypoglycemia

B. Ineffective due to resistance

148.

α-glycerophosphate (from glucose) is required for:
A. Ketone body formation
B. Cholesterol ester storage
C. Hepatic urea synthesis
D. Triglyceride deposition in adipocytes

D. Triglyceride deposition in adipocytes

149.

A patient on chronic glucocorticoids shows elevated hematocrit without bleeding. This aligns with cortisol:
A. Decreasing hematopoiesis
B. Causing hemolysis
C. Blocking erythropoietin release
D. Increasing hematopoiesis

D. Increasing hematopoiesis

150.

CRF is secreted into the primary capillary plexus of the portal system at the:
A. Arcuate nucleus
B. Supraoptic nucleus
C. Posterior pituitary
D. Median eminence

D. Median eminence

151.

CRF, ACTH, and cortisol secretion is highest:
A. In the morning
B. At midnight
C. After lunch
D. During REM sleep

A. In the morning

152.

ACTH synthesis/secretion is associated with which peptides?
A. ADH, oxytocin, prolactin
B. Renin, angiotensin, aldosterone
C. TSH, TRH, growth hormone
D. MSH, lipotropin, endorphin

D. MSH, lipotropin, endorphin

153.

In corticotrophs, which convertase yields ACTH and β-lipotropin?
A. Prohormone convertase 1
B. Prohormone convertase 2
C. Tyrosine hydroxylase
D. Catechol-O-methyltransferase

A. Prohormone convertase 1

154.

A pathway produces α-MSH, β-MSH, γ-MSH, and β-endorphin, but not ACTH. Which enzyme is responsible?
A. Prohormone convertase 1
B. 21-hydroxylase
C. Protein kinase A
D. Prohormone convertase 2

D. Prohormone convertase 2

155.

Most melanocyte-stimulating hormone is secreted from the:
A. Pars distalis
B. Pars intermedia
C. Posterior pituitary
D. Infundibulum

B. Pars intermedia

156.

In severe primary adrenal failure, ACTH is high and hyperpigmentation occurs. Best explanation?
A. ACTH has MSH activity
B. Increased bilirubin deposition
C. Increased carotene absorption
D. Hemosiderin accumulates in skin

A. ACTH has MSH activity

157.

A patient has adrenal insufficiency with very high ACTH and increased other POMC-derived peptides. Most likely diagnosis?
A. Conn syndrome
B. Cushing syndrome
C. Secondary hypoadrenalism
D. Addison disease

D. Addison disease

158.

Which constellation best fits primary Addison disease?
A. Hypernatremia, hypokalemia, pallor
B. Hyponatremia, hyperkalemia, pigmentation
C. Hyponatremia, hypokalemia, pallor
D. Hypernatremia, hyperkalemia, pallor

B. Hyponatremia, hyperkalemia, pigmentation

159.

Postpartum pituitary infarction causes low ACTH and low cortisol with intact adrenals. This is:
A. Conn syndrome
B. Cushing disease
C. Secondary hypoadrenalism
D. Primary aldosteronism

C. Secondary hypoadrenalism

160.

Metyrapone, ketoconazole, and aminoglutethimide are useful in Cushing because they:
A. Block mineralocorticoid receptors
B. Block steroid synthesis
C. Increase ACTH secretion
D. Raise cortisol-binding globulin

B. Block steroid synthesis

161.

Serotonin antagonists can reduce hypercortisolism by:
A. Inhibiting ACTH secretion
B. Activating aldosterone synthase
C. Activating 11β-hydroxylase
D. Blocking cortisol protein binding

A. Inhibiting ACTH secretion

162.

A small zona glomerulosa tumor secreting aldosterone causes:
A. Addison disease
B. Cushing disease
C. Adrenogenital syndrome
D. Conn syndrome

D. Conn syndrome

163.

A screening clue for Conn syndrome is:
A. High ACTH level
B. High urinary ketosteroids
C. Low plasma renin
D. Low free thyroxine

C. Low plasma renin

164.

A classic clinical feature of Conn syndrome is:
A. Hyperkalemia and fatigue
B. Hyponatremia and pigmentation
C. Hypotension and weight loss
D. Hypokalemia and muscle weakness

D. Hypokalemia and muscle weakness

165.

An adrenocortical tumor secreting excess androgens with masculinizing effects is:
A. Adrenogenital syndrome
B. Conn syndrome
C. Addison disease
D. Cushing syndrome

A. Adrenogenital syndrome

166.

In females, adrenogenital syndrome most classically causes:
A. Galactorrhea
B. Virilization
C. Exophthalmos
D. Myxedema

B. Virilization

167.

In prepubertal males, adrenogenital syndrome most classically causes:
A. Delayed puberty
B. Gynecomastia
C. Rapid male sex traits
D. Loss of secondary traits

C. Rapid male sex traits

168.

Best diagnostic lab finding for adrenogenital syndrome is:
A. Urinary 17-ketosteroids high
B. Plasma renin low
C. Serum TSH high
D. Free T4 low

A. Urinary 17-ketosteroids high