Print Options

Card layout: ?

← Back to notecard set|Easy Notecards home page

Instructions for Side by Side Printing
  1. Print the notecards
  2. Fold each page in half along the solid vertical line
  3. Cut out the notecards by cutting along each horizontal dotted line
  4. Optional: Glue, tape or staple the ends of each notecard together
  1. Verify Front of pages is selected for Viewing and print the front of the notecards
  2. Select Back of pages for Viewing and print the back of the notecards
    NOTE: Since the back of the pages are printed in reverse order (last page is printed first), keep the pages in the same order as they were after Step 1. Also, be sure to feed the pages in the same direction as you did in Step 1.
  3. Cut out the notecards by cutting along each horizontal and vertical dotted line
To print: Ctrl+PPrint as a list

27 notecards = 7 pages (4 cards per page)

Viewing:

chapter 17 practice quiz

front 1

A particular triplet of bases in the template strand of DNA is 5' AGT 3'. The corresponding codon for the mRNA transcribed is
A) 3' UCA 5'.
B) 3' UGA 5'.
C) 5' TCA 3'.
D) 3' ACU 5'.
E) either UCA or TCA, depending on wobble in the first base.

back 1

A

front 2

The genetic code is essentially the same for all organisms. From this, one can logically assume which of the following?
A) A gene from an organism can theoretically be expressed by any other organism.
B) All organisms have experienced convergent evolution.
C) DNA was the first genetic material.
D) The same codons in different organisms translate into the different amino acids.
E) Different organisms have different numbers of different types of amino acids

back 2

A

front 3

Which of the following nucleotide triplets best represents a codon?
A) a triplet separated spatially from other triplets
B) a triplet that has no corresponding amino acid
C) a triplet at the opposite end of tRNA from the attachment site of the amino acid
D) a triplet in the same reading frame as an upstream AUG
E) a sequence in tRNA at the 3' end

back 3

D

front 4

Which of the following provides some evidence that RNA probably evolved before DNA?
A) RNA polymerase uses DNA as a template.
B) RNA polymerase makes a single-stranded molecule.
C) RNA polymerase does not require localized unwinding of the DNA.
D) DNA polymerase uses primer, usually made of RNA.
E) DNA polymerase has proofreading function.

back 4

D

front 5

Which of the following does not occur in prokaryotic eukaryotic gene expression, but does in eukaryotic gene expression?
A) mRNA, tRNA, and rRNA are transcribed.
B) RNA polymerase binds to the promoter.
C) A poly-A tail is added to the 3' end of an mRNA and a cap is added to the 5' end.
D) Transcription can begin as soon as translation has begun even a little.
E) RNA polymerase requires a primer to elongate the molecule.

back 5

C

front 6

In eukaryotes there are several different types of RNA polymerase. Which type is involved in transcription of mRNA for a globin protein?
A) ligase
B) RNA polymerase I
C) RNA polymerase II
D) RNA polymerase III
E) primase

back 6

C

front 7

Transcription in eukaryotes requires which of the following in addition to RNA polymerase?
A) the protein product of the promoter
B) start and stop codons
C) ribosomes and tRNA
D) several transcription factors (TFs)
E) aminoacyl synthetase

back 7

D

front 8

What is a ribozyme?
A) an enzyme that uses RNA as a substrate
B) an RNA with enzymatic activity
C) an enzyme that catalyzes the association between the large and small ribosomal subunits
D) an enzyme that synthesizes RNA as part of the transcription process
E) an enzyme that synthesizes RNA primers during DNA replication

back 8

B

front 9

In an experimental situation, a student researcher inserts an mRNA molecule into a eukaryotic cell after he has removed its 5' cap and poly-A tail. Which of the following would you expect him to find?
A) The mRNA could not exit the nucleus to be translated.
B) The cell recognizes the absence of the tail and polyadenylates the mRNA.
C) The molecule is digested by restriction enzymes in the nucleus.
D) The molecule is digested by exonucleases since it is no longer protected at the 5' end.
E) The molecule attaches to a ribosome and is translated, but more slowly.

back 9

D

front 10

Use the following model of a eukaryotic transcript to answer the next few questions.

5' UTR E₁ I₁ E₂ I₂ E₃ I₃ E₄ UTR 3'

Suppose that an induced mutation removes most of the 5' end of the 5' UTR. What might result?
A) Removal of the 5' UTR has no effect because the exons are still maintained.
B) Removal of the 5' UTR also removes the 5' cap and the mRNA will quickly degrade.
C) The 3' UTR will duplicate and one copy will replace the 5' end.
D) The first exon will not be read because I₁ will now serve as the UTR.
E) Removal of the 5' UTR will result in the strand not binding to tRNAs

back 10

B

front 11

A particular triplet of bases in the coding sequence of DNA is AAA. The anticodon on the tRNA that binds the mRNA codon is
A) TTT.
B) UUA.
C) UUU.
D) AAA.
E) either UAA or TAA, depending on first base wobble.

back 11

C

front 12

What is the function of GTP in translation?
A) GTP energizes the formation of the initiation complex, using initiation factors.
B) GTP hydrolyzes to provide phosphate groups for tRNA binding.
C) GTP hydrolyzes to provide energy for making peptide bonds.
D) GTP supplies phosphates and energy to make ATP from ADP.
E) GTP separates the small and large subunits of the ribosome at the stop codon.

back 12

A

front 13

There are 61 mRNA codons that specify an amino acid, but only 45 tRNAs. This is best explained by the fact that
A) some tRNAs have anticodons that recognize four or more different codons.
B) the rules for base pairing between the third base of a codon and tRNA are flexible.
C) many codons are never used, so the tRNAs that recognize them are dispensable.
D) the DNA codes for all 61 tRNAs but some are then destroyed.
E) competitive exclusion forces some tRNAs to be destroyed by nucleases.

back 13

B

front 14

Which of the following is the first event to take place in translation in eukaryotes?
A) elongation of the polypeptide
B) base pairing of activated methionine-tRNA to AUG of the messenger RNA
C) binding of the larger ribosomal subunit to smaller ribosomal subunits
D) covalent bonding between the first two amino acids
E) the small subunit of the ribosome recognizes and attaches to the 5' cap of mRNA

back 14

E

front 15

What is the function of the release factor (RF)?
A) It separates tRNA in the A site from the growing polypeptide.
B) It binds to the stop codon in the A site in place of a tRNA.
C) It releases the amino acid from its tRNA to allow the amino acid to form a peptide bond.
D) It supplies a source of energy for termination of translation.
E) It releases the ribosome from the ER to allow polypeptides into the cytosol.

back 15

B

front 16

When the function of the newly made polypeptide is to be secreted from the cell where it has been made, what must occur?
A) It must be translated by a ribosome that remains free of attachment to the ER.
B) Its signal sequence must target it to the ER, from which it goes to the Golgi.
C) It has a signal sequence that must be cleaved off before it can enter the ER.
D) It has a signal sequence that targets it to the cell's plasma membrane where it causes exocytosis.
E) Its signal sequence causes it to be encased in a vesicle as soon as it is translated.

back 16

B

front 17

Why might a point mutation in DNA make a difference in the level of protein's activity?
A) It might result in a chromosomal translocation.
B) It might exchange one stop codon for another stop codon.
C) It might exchange one serine codon for a different serine codon.
D) It might substitute an amino acid in the active site.
E) It might substitute the N-terminus of the polypeptide for the C-terminus.

back 17

D

front 18

Which small-scale mutation would be most likely to have a catastrophic effect on the functioning of a protein?
A) a base substitution
B) a base deletion near the start of a gene
C) a base deletion near the end of the coding sequence, but not in the terminator codon
D) deletion of three bases near the start of the coding sequence, but not in the initiator codon
E) a base insertion near the end of the coding sequence, but not in the terminator codon

back 18

B

front 19

Which of the following statements is true about protein synthesis in prokaryotes?
A) Extensive RNA processing is required before prokaryotic transcripts can be translated.
B) Translation can begin while transcription is still in progress.
C) Prokaryotic cells have complicated mechanisms for targeting proteins to the appropriate cellular organelles.
D) Translation requires antibiotic activity.
E) Unlike eukaryotes, prokaryotes require no initiation or elongation factors.

back 19

B

front 20

Of the following, which is the most current description of a gene?
A) a unit of heredity that causes formation of a phenotypic characteristic
B) a DNA subunit that codes for a single complete protein
C) a DNA sequence that is expressed to form a functional product: either RNA or polypeptide
D) a DNA—RNA sequence combination that results in an enzymatic product
E) a discrete unit of hereditary information that consists of a sequence of amino acids

back 20

C

front 21

DNA template strand
5' ____________________________ 3'

DNA complementary strand
3' ____________________________ 5'

Given the locally unwound double strand above, in which direction does the RNA polymerase move?
A) 3' → 5' along the template strand
B) 5' → 3' along the template strand
C) 3' → 5' along the complementary strand
D) 5' → 3' along the complementary strand
E) 5' → 3' along the double-stranded DNA

back 21

A

front 22

DNA template strand
5' ____________________________ 3'

DNA complementary strand
3' ____________________________ 5'

In the transcription event of the previous DNA, where would the promoter be located?
A) at the 3' end of the newly made RNA
B) to the right of the template strand
C) to the left of the template strand
D) to the right of the sense strand
E) to the left of the sense strand

back 22

B

front 23

A transfer RNA (#1) attached to the amino acid lysine enters the ribosome. The lysine binds to the growing polypeptide on the other tRNA (#2) in the ribosome already.

Which component of the complex described enters the exit tunnel through the large subunit of the ribosome?
A) tRNA with attached lysine (#1)
B) tRNA with polypeptide (#2)
C) tRNA that no longer has attached amino acid
D) newly formed polypeptide
E) initiation and elongation factors

back 23

D

front 24

Which of the following is not true of a codon?
A) It consists of three nucleotides.
B) It may code for the same amino acid as another codon.
C) It never codes for more than one amino acid.
D) It extends from one end of a tRNA molecule.
E) It is the basic unit of the genetic code

back 24

D

front 25

Which of the following is not true of RNA processing?
A) Exons are cut out before mRNA leaves the nucleus.
B) Nucleotides may be added at both ends of the RNA.
C) Ribozymes may function in RNA splicing.
D) RNA splicing can be catalyzed by spliceosomes.
E) A primary transcript is often much longer than the final RNA molecule that leaves the nucleus

back 25

A

front 26

Which component is not directly involved in translation?
A) mRNA
B) DNA
C) tRNA
D) ribosomes
E) GTP

back 26

B

front 27

Which of the following mutations would be most likely to have a harmful effect on an organism?
A) a nucleotide-pair substitution
B) a deletion of three nucleotides near the middle of a gene
C) a single nucleotide deletion in the middle of an intron
D) a single nucleotide deletion near the end of the coding sequence
E) a single nucleotide insertion downstream of, and close to, the start of the coding sequence

back 27

E