Print Options

Card layout: ?

← Back to notecard set|Easy Notecards home page

Instructions for Side by Side Printing
  1. Print the notecards
  2. Fold each page in half along the solid vertical line
  3. Cut out the notecards by cutting along each horizontal dotted line
  4. Optional: Glue, tape or staple the ends of each notecard together
  1. Verify Front of pages is selected for Viewing and print the front of the notecards
  2. Select Back of pages for Viewing and print the back of the notecards
    NOTE: Since the back of the pages are printed in reverse order (last page is printed first), keep the pages in the same order as they were after Step 1. Also, be sure to feed the pages in the same direction as you did in Step 1.
  3. Cut out the notecards by cutting along each horizontal and vertical dotted line
To print: Ctrl+PPrint as a list

157 notecards = 40 pages (4 cards per page)

Viewing:

Anatomy Exam 2

front 1

Types of Muscle

back 1

o Cardiac
 Striated muscle (regular array of actin and myosin in the sarcomeres)
 Each muscle has a single, centered nucleus
 Cells are connected by intercalated discs

o Skeletal
 Hundreds of randomly located nuclei per cell (cells fuse together in development)
 Striated

o Smooth
 Single nuclei
 Not striated

front 2

describe the muscle levels of organization and components (largest to smallest)

back 2

muscle covered with epimysium
made up of fascicles (bundle of cells) covered in perimysium
made up of muscle fibers (cells) covered in endomysium
myofibrils (made of molecular motors) make up each muscle fiber and sarcomeres are contained in each myofibril

blood vessels line in between the connective tissue coverings in between the fascicles
sarcolemma is the cell membrane of muscles with invaginations (t tubules) that go into the cells
sarcoplasmic reticulum stores calcium

front 3

Muscle Connective tissue coverings

back 3

epimysium- covers whole muscle (allows muscles to contract with respect to each other without friction between them)

perimysium- covers the fascicles

endomysium- covers each muscle fiber

tendons- formed by the fusion of these 3 connective tissues

front 4

malignant hypothermia

back 4

too much calcium is released and not stored in the sarcoplasmic reticulum so muscle keeps contracting and generating heat

front 5

sarcomere construction

back 5

• Actin filaments (thin filaments) are held at the Z line
• Myosin (molecular motor) makes up the thick filament and is located on the A band
o I band only has thin filaments
o A band- mostly thick filaments with some areas where thick and thin filaments overlap
o Z line are thick vertical lines
o H zone/band- only thick filaments
o M line- holds thick filaments together

front 6

What changes in a sarcomere when a muscle contracts?

back 6

o The entire sarcomere decreases in width
o A band is the same width
o Z lines are closer together
o I band decreases in width
o Whole sarcomere decreases in width

front 7

name the tissue and label the numbers

back 7

skeletal muscle
1- Z line
2- H zone
3- I band
4- M line
5- A band

front 8

name the tissue and label the numbers

back 8

skeletal muscle
1. Z line
2. M line
3. H zone
4. I bands
5. A band
6. Sarcomere

front 9

Uncovering the myosin binding site for muscle contraction

back 9

Actin (thin) filaments are made of G proteins with binding sites for myosin that are covered up with tropomyosin when the muscle is relaxed

sarcolemma receives an electrical impulse that releases acetylcholine which causes a change in membrane potential that travels to the t tubules that connects directly to the sarcoplasmic reticulum

sarcoplasmic reticulum then releases calcium

calcium causes a conformation change which causes tropomyosin to be released and the binding site to be uncovered

front 10

muscle contraction -> relaxation
(starting after the myosin binding site is uncovered)

back 10

myosin binding sites are uncovered

ATP oxidation (ADP + Pi -> ATP)causes myosin to flip up in the activated position so actin can bind and begin the power stroke (pulls thin filaments in towards the center)

ATP hydrolysis (ATP-> ADP + Pi) causes ACh to be removed

sarcoplasmic reticulum recaptures calcium

myosin binding site on the actin filament are covered by tropomyosin

contraction ends

front 11

rigormortis

back 11

no more ATP is left 8-12 hours after death to replace the ADP on the myosin head, so there is no relaxation in muscle tissues

front 12

label

back 12

1. triad (2 terminal cisternae and a t tubule in between)
2. sarcolemma (plasma membrane)
3. myofibril (bundled thick and thin filaments, contains a chain of sarcomeres)
4. t tubule (transmit the action potential deep inside the fiber to the terminal cisternae)
5. terminal cisternae (widened sarcoplasmic reticulum that receive t tubule signals)
6. sarcoplasmic reticulum (endoplasmic reticulum that stores calcium)
7. sarcomere (smallest structural and contractile unit of a muscle myofibril)
8. thin filament (mostly actin)
9. Thick filament (mostly myosin)

front 13

name and describe

back 13

10. actin (thin proteins)
11. tropomyosin (covers the myosin binding site until calcium releases it)
12. troponin
13. myosin crossbridges (heads project towards actin, myosin cross bridges attach to actin and pull the thin filaments past the thick filaments)
14. myosin tails

front 14

label and name the nerve that innervates them

back 14

muscles of facial expression
facial nerve
2. orbicularis oculi
3. zygomaticus
4. orbicularis oris
5. platysma

front 15

name and the muscles of facial expression and describe how to test their nerve

back 15

facial nerve
to test, have the patient:
orbicularis oculi- shut their eyes tightly
zygomaticus- smile
orbicularis oris- purse their lips
buccinators- whistle (buccinator presses cheek inward)
platysma- depresses mandible (pouting)

front 16

label each muscle, its nerve, and which muscle group it belongs to

back 16

2. Orbicularis Oculi (facial expression, facial nerve)
3. Zygomaticus (facial expression, facial nerve)
4. Buccinator (facial expression, facial nerve)
5. Orbicularis oris (facial expression, facial nerve)
6. Masseter (mastication, trigeminal nerve (mandibular))
7. Platysma (facial expression, facial nerve)

front 17

axial musculature

back 17

muscles of facial expression
infrahyoid (strap) muscles (raise and lower hyoid)
abdominal muscles
splenius and semispinalis capitis (deep neck muscles that hold your head up)
erector spinae (longitudinal deep back muscles responsible for posture)

front 18

appendicular musculature

back 18

pectoral girdle- holds the upper extremity to the trunk
upper extremity- mostly in charge of controlling the hand
pelvic girdle- holds the lower extremity to the trunk
lower extremity

front 19

flexors and extensor organization for the upper and lower extremities

back 19

upper extremity
flexors are anterior
extensors are posterior

lower extremity
extensors are anterior
flexors are posterior

front 20

label each muscle, its nerve, and which muscle group it belongs to

back 20

1. Temporalis (trigeminal nerve, muscles of mastication)
2. Buccinator (facial nerve, facial expression)
3. Orbicularis oris (facial nerve, facial expression)

front 21

label each muscle and which muscle group it belongs to

back 21

1. Sternocleidomastoid (Neck muscles)
2. Splenius Capitis (Neck Muscles)
3. Trapezius (Scapula movers and stabilizers)
4. Levator Scapulae (scapula movers and stabilizers)
5. Platysma (facial expression)

front 22

label each muscle and which muscle group it belongs to

back 22

1. Infrahyoid muscles (neck muscles)
2. Suprahyoid Muscles (neck muscles)
3. sternocleidomastoid (neck muscles)

front 23

list the muscles of mastication, what they do, and their nerve

back 23

trigeminal nerve (mandibular)

Temporalis- elevates and retracts mandible
Masseter- elevates and retracts mandible

front 24

list the neck muscles, what they do, and their nerve

back 24

innervated by the cervical plexus

sternocleidomastoid (flexes head (looking down), rotates "no")
infrahyoids (depresses the hyoid bone during speaking and swallowing)
suprahyoids (elevates the hyoid bone during speaking and swallowing)
splenius capitis (holds your head up, helps to turn your neck)

front 25

label, name the muscle group

back 25

1. Platysma (facial expression)
2. Pectoralis Major (movers of the shoulder joint)
3. Latissimus Dorsi (movers of the shoulder joint)
4. Serratus Anterior (Scapula movers and stabilizers)
5. External oblique (abdominal wall)
6. sternocleidomastoid (neck muscles)
7. Trapezius (scapula movers and stabilizers)
8. Internal intercostals (respiratory muscles)
9. External intercostals (respiratory muscles)
10. Internal Oblique (abdominal wall)
11. Transverse abdominus (abdominal wall)
12. Rectus Abdominis (abdominal wall)

front 26

describe the abdominal wall muscles and name their nerve

back 26

innervated by the lumbar plexus
• External oblique- most superficial side, runs down your sides (down and medially)
• Internal oblique- run up and medially under the external oblique and deeper
• Transverse abdominus-comes across (run transversely)
• rectus (straight) abdominalis- 6 pack muscles

front 27

describe the scapula mover and stabilizer muscles and name their nerve

back 27

anterior: innervated by the brachial plexus
serratus anterior- abducts scapula and rotates it upward (throwing a punch), holds the scapula to the trunk, wings scapula back if it is injured

posterior
trapezius- shoulder shrugging, test by having a patient shrug their shoulders against resistance (accessory nerve)
levator scapulae- elevates scapula and rotates it downward (dorsal rami)
rhomboids- elevates and adducts scapula and rotates it downward, stabilizes scapula (dorsal rami)

front 28

describe the movers of the shoulder joint (not including the rotator cuff) and name their nerve

back 28

all are innervated by the brachial plexus

Posterior and anterior
deltoid- powerful abductor (raises shoulder and arm away from the body, anterior medically rotates arm, posterior laterally rotated the arm)

Anterior
Pectoralis Major- flexor (moves the humerus towards the trunk), stretchs from the chest to the humerus

posterior
Teres Major- extends, adducts, and medially rotates the arm
latissimus dorsi- pulling the arm down if it is above your head (swimming)

lateral

coracobrachialis- flex and medially rotate the arm

front 29

label each muscle and its muscle group

back 29

1. sternocleidomastoid (neck muscles)
2. Trapezius (scapula movers and stabilizers)
3. Deltoid (movers of the shoulder joint)
4. Infraspinatus (movers of the shoulder joint, rotator cuff)
5. Teres Major (movers of the shoulder joint)
6. Latissimus Dorsi (movers of the shoulder joint)
7. External Oblique (abdominal wall)
8. Splenius Capitis (neck muscles)
9. Levator Scapulae (scapula movers and stabilizers)
10. Rhomboids (scapula movers and stabilizers)
11. Supraspinatus (movers of the shoulder joint, rotator cuff)
12. Teres Minor (movers of the shoulder joint, rotator cuff)

front 30

describe the vertebral column muscles and their nerve

back 30

erector spinae- group of longitudinal deep back muscles, responsible for posture, helps to turn the neck

innervated by the dorsal rami

front 31

label each muscle and its muscle group

back 31

1. Subscapularis (movers of the shoulder joint, rotator cuff)
2. Teres Major (movers of the shoulder joint)
3. Coracobrachialis (movers of the shoulder joint)
4. Biceps Brachii (movers of the elbow joint)
5. Supraspinatus (movers of the shoulder joint, rotator cuff)
6. Infraspinatus (movers of the shoulder joint, rotator cuff)
7. Teres Minor (movers of the shoulder joint, rotator cuff)
8. Triceps Brachii (movers of the elbow joint)

front 32

describe the rotator cuff muscles

back 32

SITS

innervated by brachial plexus and branches

supraspinatus- posterior, assists the deltoid in abducting the arm
infraspinatus- posterior, laterally rotates and adducts the arm
teres minor- posterior, laterally extends, adducts, and rotates the arm
subscapularis- anterior, medially rotates the arm

front 33

dorsal rami

back 33

little branches that have motor and sensory rami (mixed spinal nerves)

only go to the deep back muscles and skin on the back

innervates the erector spinae and splenius capitis

front 34

wrist drop

back 34

when people break their humerus they can damage thier radial nerve (part of the brachial plexus)

cannot extend their arms/wrist, everything is flexed

front 35

describe the movers of the elbow joint

back 35

triceps brachii- major extensor of the upper extremity

biceps brachii- flexes the arm

brachialis- most powerful flexor of the forearm

brachioradialis- weak flexor of the elbow

front 36

label the muscles and name their muscle group

back 36

1- subscapularis (movers of the shoulder joint, rotator cuff)
2- teres major (movers of the shoulder joint)
3- biceps brachii (movers of the elbow)
4- brachialis (movers of the elbow)

front 37

label the muscles and the muscle group

back 37

1- pronator teres (movers of the wrist and fingers)
2- flexor carpi radialis (movers of the wrist and fingers)
3- brachioradialis (movers of the elbow)
4- palmaris longus (movers of the wrist and fingers)
5- flexor carpi ulnaris (movers of the wrist and fingers)

front 38

label and describe the muscles

back 38

All flexors or abductors

1. biceps brachii (flexes arm)
2. brachialis (flexes forearm)
3. pronator teres (pronates and weakly flexes forearm)
4. brachioradialis (flexes forearm)
5. flexor carpi radialis (flexes wrist)
6. palmaris longus (weakly flexes wrist)
7. flexor carpi ulnaris (flexes and adducts hand)
8. flexor digitorum (flexes the digits-IMPORTANT)
9. flexor pollicis longus (flexes distal phalanx of thumb)
10. Abductor Pollicis brevis (abducts the thumb)

front 39

label and describe the muscles

back 39

1- extensor carpi radialis (extend and adduct hand)
2- extensor carpi ulnaris (extends and adducts hand)
3- extensor digitorum (extends hand and phalanges)
4- flexor carpi ulnaris (flexes and adducts hand)

front 40

carpal tunnel

back 40

space in the wrist containing flexor digitorum tendons and median nerve

carpal tunnel syndrome- overuse of the hand causes the tendons to become inflamed which compresses the median nerve

front 41

describe the movers of the hip joint

back 41

Adductor Longus
pectineus
iliopsoas- major hip flexor
tensor fascia lata- flexes and abduct the thigh
gluteus maximus
gluteus medius
piriformis
sartorius- flexes leg and flexes, abducts and laterally rotates the thigh (allows us to cross our legs)
gracilis

front 42

brachial plexus injury

back 42

changes in the hand depending on where the brachial plexus was injured

claw hand

Crutches push on the brachial plexus and can cause numbness in the hands when the brachial plexus is compressed (affects all nerves of the upper extremity)

front 43

muscles of the hand

back 43

innervated by the brachial plexus
lumbricals- little worms, flex the metacarpal joint
abductor pollicis- abducts the thumb
flexor retinaculum- carpal tunnel is underneath
interossei- muscle group in hand

front 44

gluteal region

back 44

gluteus maximus- powerful extensor of the hip joint
gluteus medius- abducts and medially rotates the thigh

test gluteal region strength by having someone sit in a chair and and stand up without using their hands or by walking up stairs

front 45

label the anterior superficial thigh muscles

back 45

1- iliopsoas
2- tensor fasciae latae
3- sartorius
4- rectus femoris (Quadriceps)
5- iliotibial tract (tendon, abducts the thigh)
6- vastus lateralis (Quadriceps)
7- vastus intermedius (Quadriceps)
8- vastus medialis (Quadriceps)
9- pectineus
10- adductor longus
11- gracilis

front 46

describe the movers of the hip joint

back 46

medial adductors in the groin region are innervated by the obturator nerve

adductor longus (anterior, medial adductor)
pectineus (anterior, adducts and flexes thigh)
iliopsoas (anterior, major hip flexor)
tensor fascia lata (lateral, adductor of the thigh)
gluteus maximus (posterior, powerful extensor of the hip, laterally rotates the thigh)
gluteus medius (posterior, adducts and medially rotates the thigh)
piriformis (deep posterior, laterally rotates and extends the thigh, sciatic nerve is underneath it)
sartorius (anterior, allows us to cross our legs, innervated by the femoral nerve)
gracilis (anterior, adducts and medially rotates thigh, flexes leg)

hip adductors get injured in a groin pull

front 47

sciatic nerve

back 47

largest nerve in the body
branches into the tibial nerve (posterior) and the fibular nerve (anterior)

sciatic nerve and its branches innervates mostly the whole lower extremity (except parts of the thigh)

piriformis syndrome- an overactive piriformis (sciatic nerve sits underneath the piriformis)caused a compressed sciatic nerve which causes major lower extremity problems

front 48

describe the movers of the knee joint

back 48

Quadriceps (rectus femoris, vastus lateralis, vastus medialis, vastus intermedius)- knee extensor, innervated by the fibular nerve

hamstrings (bicep femoris, semimembranosus)- flexes knee (more important) and extends the hip

front 49

label the anterior deep thigh muscles or ligaments

back 49

1- inguinal ligament
2- gracilis
3- adductor longus

front 50

label the thigh muscles

back 50

1- gluteus medius
2- gluteus maximus
3- gracilis
4- iliotibial tract (tendon, abducts the thigh)
5- semimembranosus
6- biceps femoris (hamstring)

front 51

describe the movers of the ankle and toes

back 51

gastrocnemius- posterior, plantar flexes the foot and flexes the leg
soleus- posterior, plantar flexes the foot
fibularis (peroneus) longus- lateral anterior, plantar flexes and everts the foot
fibularis brevis
tibialis anterior- lateral anterior, dorsiflexes and inverts the foot (innervated by the fibular nerve)
tibialis posterior- inverts the ankle
flexor digitorum longus- posterior, flexes the toes
flexor hallucis longus- posterior, flexes the big toe
extensor digitorum- lateral anterior, dorsiflexes the foot and extends the toes (innervated by the fibular nerve)
extensor hallucis longus

anterior leg muscles dorsiflex (extend) the ankle
tibialis anterior and posterior (together) invert the ankle
deeper posterior leg muscles cause plantar flexion of toes
lateral leg muscles are everters

front 52

label the muscles of the anterior superficial leg

back 52

1= tibialis anterior
2= extensor digitorum
3- fibularis (peroneus) longus
4= fibularis (peroneus) brevis
5= gastrocnemius
6= soleus
7= flexor digitorum longus

front 53

label the muscles or tendons of the posterior superficial leg

back 53

1- gastrocnemius
2- soleus
3- fibularis (peroneus) longus
4- flexor hallucis longus
5- calcaneal (Achilles) tendon

front 54

label the muscles of the posterior deep leg

back 54

1- tibialis posterior
2- flexor digitorum longus
3- flexor hallucis longus

front 55

foot drop

back 55

injury to the fibular nerve causes the foot to stay plantarflexed (lack of dorsiflexion, toes point down)

fibular nerve is the most commonly injured nerve in the body

front 56

Central nervous system (CNS) vs peripheral nervous system (PNS)

back 56

CNS- brain and spinal cord, develops from neural tube
integrates sensory (afferent) and motor (efferent) information

PNS- formed from neural crest cells that migrated from the neural tube
 Somatic (innervated skeletal muscle), autonomic (innervates smooth muscle, cardiac muscle, and glands), and sensory ganglia brings information into the nervous system
connected to receptors and effectors

front 57

schwann cells

back 57

PNS
develop from neural crests
myelinate peripheral axons (form protective covering for all axons)

disease that affect peripheral myelin usually go away

front 58

oligodendrocytes

back 58

cells that myelinate axons of the CNS
diseases of the CNS myelin are usually contiguous (ex. multiple sclerosis goes on and off but is usually progressive)

front 59

name and label the cell

back 59

motor neuron
3- dendrites
4- axon
5- axon hillock
6- cell body
7- nucleus

front 60

name and label the parts

back 60

1. axon terminal
2. schwann cell
3. node of ranvier
4. axon collateral
5. axon
6. dendrites
7. cell body
8. axon hillock
9. trigger zone
10. myelin sheath of schwann cell

front 61

functional classifications of neurons

back 61

sensory neurons (afferent)- conduct signals from receptor to CNS when environmental changes are detected, unipolar neuron

interneuron (association)- confined to CNS, multipolar neurons

motor neuron (efferent)- conduct signals from the CNS (spinal cord) to effectors such as muscles and glands, multipolar neurons

front 62

classify the neuron structure

back 62

1- unipolar (sensory (afferent) neuron)
2- multipolar (interneuron)
3- bipolar (motor (efferent) neuron)

front 63

label the cells and components

back 63

dorsal root ganglia, unipolar cells

1= process
2= satellite cells
3= nucleus
4= neuron cell body

front 64

label the cells and components

back 64

cerebral cortex, multipolar neurons

5- neuron cell body
6- nucleus
7- process

front 65

name the structure and label

back 65

1- neurolemma
2- myelin sheath
3- node of ranvier
4- axon

front 66

Peripheral Nervous system (PNS)

back 66

Spinal nerves (below the neck)- sensory and motor

Autonomic Nervous System (ANS, innervates things that are automatic, spinal or cranial nerves, ex. salivation)- sympathetic and parasympathetic

Cranial nerves (generally innervate the things in the head, ex. salivation)- come off the brain but innervate structures outside of the CNS

front 67

cauda equina

back 67

(“horse’s tail”)= nerve roots at the lower part of the spinal cord (lumbar and sacrum)

At birth the spinal cod has equal length as the vertebra (spinal cord and spinal nerve labels match their places in the vertebral column)

As an adult the spinal cord ends at the L1/L2 vertebrae since the spinal cord grows much slower then the vertebral column. Vertebrae pulls nerve roots down with it during development so the nerve roots still exit at their appropriate vertebrae

best place for a Lumbar puncture/spinal tap

front 68

lumbar puncture/spinal tap

back 68

Best place to get cerebral spinal fluid (CSF) is between L4 or L5 in the cauda equina because you can get CSF without puncturing the spinal cord since there is lots of CSF and only small nerve roots (like sticking a fork into cooking spaghetti)

front 69

name the structure and label the parts

back 69

1. posterior root
2. lateral white column
3. central canal
4. posterior median sulcus
5. posterior white column
6. posterior gray horn
7. posterior root ganglion
8. anterior root
9. anterior gray horn
10. anterior white column
11. Gray commissure
12. Anterior median fissure

front 70

name the structure and label and describe each number

back 70

cross section of spinal cord

1- pia mater- delicate covering where small blood vessels are located
2- dura mater- tough, plastic like outer covering
3- epidural space- space in between the dura mater and vertebral bone where epidural anesthesia is injected for pelvis and lower extremity surgeries
4- subarachnoid space- where cerebral spinal fluid is located
5- arachnoid matter- spider web-like covering

front 71

name the structure and label each number

back 71

cross section of spinal cord

1- spinal nerve
2- posterior root ganglion
3- posterior root
4- posterior median sulcus
5- central canal
6- anterior root
7- anterior median fissure
8- white matter
9- gray matter

front 72

label the diagram

back 72

5- sympathetic ganglion
6- spinal nerve
7- intervertebral foramen
8- anterior ramus
9- posterior ramus
10- rami communicantes

front 73

label the spinal plexi

back 73

1- sacral plexus
2- lumbar plexus
3- brachial plexus
4- cervical plexus
5- cervical nerve
6- thoracic nerve
7- lumbar nerve
8- sacral nerve
9- coccygeal nerve

front 74

label the nerves that come from the cranial and brachial plexuses

back 74

1- axillary nerve
2- musculocutaneous nerve
3- median nerve
4- ulnar nerve
5- radial nerve
6- phrenic nerve

front 75

label the nerves that cam from the lumbar and sacral plexuses

back 75

1- obturator nerve
2- pudendal
3- femoral nerve
4- sciatic
5- tibial
6- common fibular

front 76

label the 4 major brain regions

back 76

1- cerebrum
2- cerebellum
3- diencephalon
4- brain stem

front 77

label the inferior side of the brain

back 77

1- olfactory bulb
2- olfactory tract
3- pituitary gland
4- optic tract
5- mammillary body
6- cerebellar peduncles
7- olive
8- pyramids
9- spinal nerve C1
10- spinal cord
11- cerebrum
12- cerebral peduncle of midbrain
13- pons
14- medulla oblongata
15- cerebellum

front 78

meningeal arteries

back 78

blood vessels that run between the dura mater and the skull

 if one breaks they bleed between the dura and the skull- epidural hematoma (creating a space that shouldn't be there, arterial bleed so it compresses the brain pretty rapidly)

 Middle meningeal artery- between the dura and the temporal bone
• Artery that breaks if someone gets hit in the temporal part of the head

front 79

duravenus sinuses

back 79

normally occurring and blood drains from bridging veins from the brain and the subarachnoid space into these sinuses that eventually form the jugular vein

 If a brain shrinks (can happen with aging and dementia) then the bridging veins stretch and if someone hits their head, then the veins will rupture and cause a subdural hematoma

• Subdural hematoma- slow bleed, person becomes confused, major problems later, serious but difficult to diagnose
• Bleeds into the subdural space

front 80

subarachnoid hematoma

back 80

o Arteiries in brain also travel through the subarachnoid space
 Artery break- subarachnoid hematoma
• Weakness in walls of arteries of high blood pressure

front 81

brain stem

back 81

consists of the midbrain (processes visual and auditory data), pons (relays sensory information to cerebellum and thalamus) and medulla (relays sensory information to thalamus)

origin of all cranial nerves (except I and II)

many nervous pathways travel through the brainstem

front 82

levels of the spinal cord

back 82

31 levels of the spinal cord (each level gives off mixed spinal nerves (motor and sensory))

8 cervical spinal cord levels (7 cervical vertebrae)
12 thoracic spinal cord levels (1 for each rib)
5 lumbar levels
5 sacral levels
1-2 coccygeal levels (usually considered to have 1)

front 83

white vs gray matter in the spinal cord

back 83

White matter (axons) are on the outside of the spinal cord carrying sensory info up to the brains and motor info down to the limbs

Gray matter-cell bodies (sensory info enters at the dorsal root via the dorsal horn (dorsal root ganglia are sensory cell bodies), ventral part of gray matter contains motor neuron cell bodies that exit the spinal cord at the ventral root)

front 84

Spinal cord nerve roots

back 84

Dorsal root ganglia- sensory cell bodies
Dorsal root- bringing info into the spinal cord (sensory neurons, unipolar)
Ventral root- axons of motor neurons, goes directly to muscles

Mixed spinal nerves- signals to and from the goal location (everywhere neck down), travel in the same nerve in opposite directions like a highway, made by dorsal and ventral roots joining, split into dorsal and ventral rami

Dorsal rami-only innervates deep back muscles, erector spinae muscles, skin of midline of the back

Ventral rami- much larger than dorsal, innervates everything else that isn’t covered by dorsal rami (neck and below), can go off on their own or form plexi (how upper and lower extremities are innervated)

front 85

upper extremity nerves

back 85

all from the brachial plexus

musculocutaneous- flexors of arm (biceps and brachialis)

median- most flexors of the wrist, lateral phalanges, most thumb muscles. passes through the carpal tunnel

ulnar- some flexor of the wrist, all flexors of medial phalanges (funny bone, medial side of humerus)

radial- all extensors of the upper extremity

axillary- deltoid and part of the rotator cuff

front 86

dermatomes

back 86

o dermatome- sensory information from a single dorsal root
If you injure a dorsal root you get a dermatome pattern of sensory losses

shingles-the virus lives in a dorsal root and becomes activated and comes out of a dorsal root to cause painful symptoms along a dermatome (single stripe pattern on skin)

front 87

major nerve plexi and what they innervate

back 87

all are made from ventral rami

cervical plexus: C1-C5, innervates strap muscles
brachial plexus: C5-T1, innervates the entire upper extremity, has 5 branch nerves
T2-T12 we don't form plexi, just intercostal nerves
Lumbar plexus: L1-L5, innervates abdominal muscles
Sacral Plexus: S1-S4
Lumbosacral plexus- gives rise to sciatic nerve which innervates the entire lower extremity

front 88

Lumbar and sacral plexi

back 88

five rise to the following nerves

femoral nerve- innervates quadriceps

obturator nerve- innervates adductors

sciatic nerve- L4 to S3 (largest nerve in the body)
innervates hamstrings
gives rise to: tibial nerve (innervates all flexors), and fibular nerve (innervates all extensors)

sacral nerve damage- bladder and bowel problems due to parasympathetic innervations

front 89

autonomic nervous system (ANS)

back 89

all glands and smooth muscle innervations and cardiac muscle
parasympathetic and sympathetic nervous systems

both parasymp and symp divisions have 2 motor neurons between the spinal cord and the effectors (the first motor neuron (preganglionic) synapses with the second motor neuron (postganglionic) in the ANS ganglia

front 90

parasympathetic vs sympathetic nervous systems

back 90

Sympathetic- go everywhere (innervated sweat glands in skin that are located everywhere), preganglionic sympathetics located in 14 thoracolumbar (T1-L2 in CNS), in chain that extends the entire length of the trunk, Every spinal nerve from C1 to coccygeal must have sympathetic innervations

Parasympathetic- in head in places that drip [pupil of eye, lacrimal gland (tears), salivary gland], vagus nerve (heart, lungs), sacral nerve (bowel and bladder)
go to oculomotor nerve (constrict pupils) and facial nerve (glands(

front 91

3 things every spinal nerve has

back 91

motor fibers for muscle
postganglionic sympathetic fibers to innervate sweat glands in skin
sensory fibers for sensation

front 92

label the inferior portions of the brain and name the part of the brain formed by 6, 7, and 8

back 92

brainstem (formed by 6,7,8)

6- midbrain
7- pons
8- medulla oblongata
9-spinal cord

front 93

name the part of the brain and label

back 93

cerebellum

1- cerebellar hemispheres
2- vermis
3- folia
4- superior colliculus
5- inferior colliculus
6- arbor vitae (white matter)
7- cerebellar cortex (gray matter)
8- pons
9- medulla oblongata

front 94

label the parts of the sagittal brain

back 94

1- pineal gland
2- thalamus
3- hypothalamus
4- diencephalon
5- cerebrum
6- cerebellum
7- spinal cord
8- midbrain
9- pons
10-medulla oblongata
11- brainstem

front 95

label that parts and name the structure

back 95

diencephalon

5- mammillary body
6- pineal gland
7- thalamus
8- intermediate mass of thalamus
9- hypothalamus
10- infundibulum
11- pituitary gland
12- optic chiasm

front 96

name the part of the brain and label

back 96

cerebrum

1- internal capsule
2- cerebral cortex
3- white matter
4- corpus callosum
5- fornix
6- basal nuclei

front 97

label

back 97

1- central sulcus (shallow groove separating the frontal lobe and parietal lobe)
2- postcentral gyrus (elevation located just posterior to the central sulcus)
3- parietal lobe
4- occipital lobe
5- transverse fissure (deep groove separating the cerebrum from the cerebellum in the posterior/ inferior part of the brain)
6- precentral gyrus (elevation located just anterior to the central sulcus)
7- frontal lobe
8- insula (inner lobe deep to the lateral cerebral fissure)
9- temporal lobe (cut)

front 98

label the functional areas of the cerebral cortex

back 98

1- Broca's speech area
2- primary gustatory area
3- primary motor area
4- central sulcus
5- primary somatosensory area
6- primary visual area
7. Wernicke's area
8. primary auditory area

front 99

label the cranial meninges

back 99

1- subarachnoid space
2- arachnoid villus
3- falx cerebri
4- white matter
5- superior sagittal sinus
6- parietal bone
7- dura mater
8- arachnoid mater
9- pia mater
10- cerebral cortex

front 100

label the ventricles of the brain

back 100

8- lateral ventricles
9- interventricular foramen
10- 3rd ventricle
11- cerebral aqueduct
12- 4th ventricle
13- central canal of the spinal cord

front 101

label

back 101

14-superior sagittal sinus
15- arachnoid villus
16- subarachnoid space
17- lateral ventricle
18- choroid plexus
19- 3rd ventricle
20- cerebral aqueduct
21- 4th ventricle
22- central canal

front 102

central sulcus

back 102

groove that separates the frontal and parietal lobes

front 103

primary motor cortex

back 103

part of the motor areas to the cerebral cortex

located in the precentral gyrus of each frontal lobe

controls impulses to muscles

• A lot of cortex controls the face, fingers
• Medially controls toes and lower extremities
• Lateral cerebral cortex stroke- effects of facial expression, speech (left side), movements of hands and fingers
o Problems with motor control on the opposite side

 Premotor (or motor association) cortex- programs of motor movement are made

front 104

broca's speech area

back 104

part of the motor areas to the cerebral cortex

located anterior to the primary motor cortex

initiates impulses that result in speech

• Lateral cerebral cortex stroke- effects of facial expression, speech (left side), movements of hands and fingers

front 105

primary somatosensory cortex

back 105

part of the sensory areas to the cerebral cortex

determines where on the body the sensory stimulation occurred

mostly devoted to hands and face

front 106

primary auditory area

back 106

part of the sensory areas to the cerebral cortex

in the temporal lobe

interprets auditory stimuli from auditory receptors

front 107

primary gustatory area

back 107

part of the sensory areas to the cerebral cortex

receives impulses from taste receptors

front 108

prefrontal cortex

back 108

judgement and decision making

front 109

primary visual area

back 109

in occipital lobe

part of the sensory areas to the cerebral cortex

receive information from the retina and interprets the visual stimulu

front 110

primary olfactory area

back 110

located on in the temporal lobe

part of the sensory areas to the cerebral cortex

receives impulses from olfactory receptors

front 111

wernicke's area

back 111

part of the association areas to the cerebral cortex

recognize spoken words, translates words into thoughts, and possibly helps us sound out strange or new words

front 112

somatosensory, visual, and auditory association areas

back 112

part of the association areas to the cerebral cortex

adjacent to their corresponding sensory cortex

integrate sensory information from the sensory cortex with past experiences

front 113

commissural pathways

back 113

crossing pathways from one side of the brain to the other

o Corpus callosum (connects 2 cerebral hemispheres)- major commissure
 Almost everything in the right cortex contributes info to the left cortex via crossing fibers
o Optic chiasm is another example

front 114

projection pathways

back 114

o Projects from higher to lower
o Like for your cerebral cortex (motor cortex) to tell your muscles what to do you need fibers that go from the cortex to the spinal cord (motor neurons for muscles are in the spinal cord, for these neurons to fire they need a signal from the cortex)
o Projection pathways- north to south or south to north

front 115

association pathways

back 115

connect parts of our brain on the same side

ex. seeing and interpreting what your hand is writing

front 116

basal ganglia disease

back 116

huntington's disease

the patient cannot suppress unwanted movements

• Basal ganglia (deeper nuclei, gray matter)- suppresses unwanted movement

front 117

cerebellum

back 117

2 hemispheres with the vermis connecting them

regulates posture and balance, smooths and coordinates skilled skeletal muscle movements

front 118

diencephalon

back 118

2 main regions: thalamus, hypothalamus, and epithalamus

thalamus- gets all sensory infor except olfaction (olfaction needs to be faster for survival)
suppresses unwanted sensory infor- allows for focus, selects what sensory info is important and sends it to the cerebral cortex

hypothalamus- control many bodily functions and homeostasis
contains the optic chiasm- where the optic nerve crosses

epithalamus- contains some glands

front 119

epidural hematoma

back 119

head trauma (brain swelling, broken artery) causes the brain to squish to the only space available which compresses the oculomotor nerve

uncus is a piece of the temporal lobe that herniates if the brain swells which pushes on the oculomotor nerve
o Pupils cannot compress and stay dilated and are not responsive to light

front 120

acoustic schwannoma

back 120

tumor of Schwann cells (peripheral nervous system cells), compresses nerve VIII (vestibulocochlear and facial VII), and can affect the cerebellopontine angle (angle between the cerebellum (important for coordination) and the pons)
• Nerve damage causes uncoordinated gate, droopy face, hearing loss, ringing in the ears can only all happen together at the cerebellopontine angle

front 121

path of cerebral spinal fluid (CSF)

back 121

CSF leaks out of the choroid plexus blood vessels
ependymal cells with cilia push the CSF in one direction into the lateral ventricle

the CSF then moves into the 3rd ventricle then into the 4th ventricle via cerebral aqueducts

the CSF then goes into the subarachnoid space surrounding the brain and spinal cord (CSF follows the central canal of the spinal cord then goes back into the subarachnoid space)

CSF it then returned to the blood through arachnoid villi located at the superior sagittal sinus

front 122

list all the cranial nerves in order

back 122

I Olfactory
II Optic
III Oculomotor
IV Trochlear
V Trigeminal (Ophthalmic, Maxillary, Mandibular)
VI Abducens
VII Facial
VIII Vestibulocochlear
IX Glossopharyngeal
X Vagus
XI Accessory
XII Hypoglossal

Oh, Oh, Oh To Touch And Feel Very Good Velvet, AH

front 123

label the cranial nerves

back 123

1. olfactory
2. optic
3. Oculomotor
4. Trochlear
5. Trigeminal (Ophthalmic, Maxillary, Mandibular)
6. Abducens
7. Facial
8. Vestibulocochlear
9. Glossopharyngeal
10. Vagus
11. Accessory
12. Hypoglossal

front 124

olfactory nerve I

back 124

• Usually if you have a problem with one olfactory nerve then the other one will take over

You may regenerate olfactory neurons (but not any others)
Olfactory nerves are tiny branches that are attached to receptors, axons go through the cribriform plate then form into the olfactory nerve
What we often call the olfactory nerve is actually the olfactory tract (CNS)

Test by having a patient smell something through one nostril at a time

purely sensory

goes straight to the cerebrum for processing (only sensory nerve that doesn't go through the thalamus)

front 125

optic nerve II

back 125

Optic nerve starts in the retina ((retinal ganglion cells give rise to the optic nerve [myeleinated by an oligodendrocyte which speeds up conduction in the CNS]). Optic nerve is very fast conducting nerve

Actually a CNS tract

Right visual field process on the left side of the brain, visa versa

Tested using visual fields, doctors move fingers from lateral to medial parts of visual fields

front 126

multiple sclerosis

back 126

CNS disease affecting myelination and oligodendrocytes

deteriorates CNS myelin and is first noticed in the optic nerve since conduction is usually so fast

front 127

optic chiasm

back 127

when the optic nerve crossed over in the brain above the pituitary gland (commissure). Optic nerve comes from the lateral part of your visual field.

Pituitary gland tumors causes “tunnel vision” which limits your vision into the center of your visual field due to damage to the optic chiasm, damages the crossing fibers

front 128

Oculomotor, Trochlear, and Abducens (III, IV, and VI) cranial nerves

back 128

Always tested together, more extra-ocular muscles

Oculomotor- innervates the levator palpebrae (oculomotor lesion would cause trouble elevating the eyelid) and 4 extra ocular muscles and pupil (parasympathetic, constrict)
Oculomotor Damage- causes droopy eyelid (ptosis) and a dilated pupil

Trochlear lesion- Can’t look down and in (trouble reading)
Abducens- abducts the eye, cannot abduct both eyes are the same time (one abducts and the other stays neutral)

test these by observing eyelids (ptosis is abnormal), moving eye in different directions, and making sure pupil constricts

front 129

trigeminal nerves (V)

back 129

main sensory nerve to the head, motor to muscles of mastication (gives you sensation on your face)

• Ophthalmic nerve (afferent, corneal blink reflex with facial nerve)- innervates forehead and cornea
o Test afferent by putting a whisp of cotton on their eye to get them to blink or tap forhead
o Afferent=ophthalmic, efferent=facial -> V-VII reflex

• Maxillary nerve- innervates the upper teeth, cheek, around the nose (purely sensory)

• Mandibular division- lower teeth, chin, motor component
o Trigeminal motor component- muscles of mastication (chewing, temporalis, masseter)
test by tapping chin

front 130

facial nerve (VII)

back 130

motor to muscles of facial expression, taste, anterior 2/3 of tongue, ANS to lacrimal submandibular and (sublingual)salivary glands

Innervates muscles of facial expression- test it by having the patient make faces or by testing the corneal blink reflex

Carries taste, autonomic to the lacrimal gland and 2 of the salivary glands

corneal blink refllex (V-VII)
shutting the eye is a muscle (nerve VII) for facial expression (open with III-oculomotor), puff of air causes patient to blink which tests facial nerve

front 131

vestibulocochlear (VIII) nerve

back 131

purely sensory

Tumor on VII cranial nerve- dizziness, ringing in ears, hearing loss
Acoustic Schwannomas

front 132

glossopharyngeal (IX)

back 132

sensory to pharynx (back or throat, or motor to 1 small pharynx muscle)
taste, posterior 1/3 of tongue
visceral sensory

Test using the gag reflex (IX-X reflex)- sticks a tongue depressor on the tongue to push it down and see the back of the throat and make you gag
Afferant- IX (vagus), constricts pharynx
Efferent- causes gag (X)

front 133

vagus nerve (X)

back 133

Motor:larynx and pharynx
ANS: visceral organs
Sensory:visceral organs
Taste

Vagabond: wanders out of the head to innervate the pharynx and larynx (swallowing and speaking)
Parasympathetic to all the organs down to the the small intestine
Tested using the gag reflex (IX-X reflex)

front 134

Accessory and hypoglossal nerves (XI and XII)

back 134

Accessory (XI)- innervates sternocleidomastoid (test by having the look from side to side) and trapezius (check by putting hands on pts shoulder and having them shrug against resistance)

Hypoglossal (XII)- innervates the muscles on the tongue, test by sticking the tongue out and having the patient move it from side to side, damage on one side has the tongue pointed towards the side of the lesion

front 135

label

back 135

1. interneuron
2. sensory neuron (afferent)
3. sensory receptor
4. preganglionic motor neuron
5. autonomic ganglion
6. postganglionic motor neuron
7. visceral effector

front 136

label the muscles

back 136

1. superior oblique
2. superior rectus
3. lateral rectus
4. medial rectus
5. inferior oblique
6. inferior rectus

front 137

label the parts of the eye

back 137

1. scleral venous sinus
2. ciliary muscle
3. ciliary process
4. ciliary body
5. choroid
6. sclera
7. retina
8. cornea
9. pupil
10. iris
11. suspensory ligaments
12. ora serrata

front 138

label the tissue and the numbers

back 138

retina

1. macula lutea
2. central fovea
3. blood vessel
4. optic disc

front 139

label the eye

back 139

6. cornea
7. pupil
8. iris
9. ciliary body
10. lens
11. choroid
12. sclera
13. retina
14. optic disc
15. optic nerve

front 140

name the tissue

back 140

retina

front 141

label the ear

back 141

1. lobule
2. auricle
3. helix
4. external ear
5. malleus
6. incus
7. stapes attached to oval window
8. middle ear
9. internal ear
10. auditory tube
11. tympanic membrane
12. external auditory canal

front 142

label the internal ear

back 142

1. anterior semicircular canal
2. posterior semicircular canal
3. lateral semicircular canal
4. ampulla of semicircular canal and duct
5. utricle
6. saccule
8. membranous semicircular duct
9. vestibule
10. round window
11. cochlea
12. cochlear duct

front 143

3 coats of the eye

back 143

fibrous (cornea=clear layer, sclera= opaque layer)

choroid (highly vascular, gives rise to iris and ciliary body)

retinal layer (inner, sensory (photo) receptors)

front 144

conjunctiva

back 144

connective tissue layer that lines the eyelid, makes a bend and reflects over the sclera, does not go over the cornea (or you wouldn’t be able to see)
 Contact lenses can get stuck behind the ledge

front 145

path of light through the eye

back 145

o Light goes through the cornea, through the anterior chamber of the eye through fluid, through the pupil, through the lens where its focused, through the vitreous (eye jelly) then to the retina

front 146

aqueous humor

back 146

o Aqueous humor- circulating fluid, produced by cells in Ciliary body, circulated then is reabsorbed in the canal of schlemm
 If the canal of schlemm is blocked then pressure builds in the eye and causes glaucoma

front 147

ear

back 147

o Middle ear has ossicles (tiny bones) that vibrate with sound waves and that vibration is transduced to pressure waves which is then transduced to an electrical signal in the cochlea
o Hair cells run against the tectorial membrane to transmit sound
o 2 tiny muscles (tensor tipany, )that are in the ear that contract with very large sounds to dampen the sound and damaging the cochlea

front 148

extra-ocular muscles

back 148

• innervated by the cranial nerves III (oculomotor), IV (trochlear), VI (abducens)
• ocular motor nerve- droopy eye lid, opens the eye (lavatory palpebrae)
• lateral rectus- abducens nerve, that abducts, lets the eye move laterally

front 149

name the structure and what the arrows are pointing to

back 149

axon terminals on a neuromuscular junction

arrows point to motor end plates

front 150

name the structure

back 150

cochlea

front 151

name the structure

back 151

ganglion

front 152

name the structure and what the arrow is pointing to

back 152

neuron
arrow pointing to nissl substance

front 153

name the structure and what the arrow is pointing to

back 153

peripheral nerve in cross section
arrow is pointing to perneurium

front 154

name the structure and label

back 154

spinal cord

1. dorsal horn (gray matter)
2. white matter
3. Ventral horn (gray matter)

front 155

name the tendon indicated by the arrow

back 155

lumbodorsal (thoracolumbar) fascia (tendon)

front 156

name the white part of the muscle

back 156

central tendon of the diaphragm

front 157

name the tendon and nerve

back 157

1. flexor retinaculum of the wrist (tendon)
2. median (nerve)