Print Options

Card layout: ?

← Back to notecard set|Easy Notecards home page

Instructions for Side by Side Printing
  1. Print the notecards
  2. Fold each page in half along the solid vertical line
  3. Cut out the notecards by cutting along each horizontal dotted line
  4. Optional: Glue, tape or staple the ends of each notecard together
  1. Verify Front of pages is selected for Viewing and print the front of the notecards
  2. Select Back of pages for Viewing and print the back of the notecards
    NOTE: Since the back of the pages are printed in reverse order (last page is printed first), keep the pages in the same order as they were after Step 1. Also, be sure to feed the pages in the same direction as you did in Step 1.
  3. Cut out the notecards by cutting along each horizontal and vertical dotted line
To print: Ctrl+PPrint as a list

125 notecards = 32 pages (4 cards per page)

Viewing:

Neuro 17

front 1

In addition to conventional synapses, hypothalamus–pituitary signaling also uses:
A. Membrane-bound adhesion molecules
B. Soluble humoral factors
C. Electrical gap junction coupling
D. Local paracrine cytokine gradients

back 1

B. Soluble humoral factors

front 2

The pituitary–hypothalamus axis forms a functional link between the:
A. Endocrine and immune systems
B. Neural and immune systems
C. Limbic and autonomic systems
D. Neural and endocrine systems

back 2

D. Neural and endocrine systems

front 3

A patient develops profound dysregulation of feeding, thirst, and sleep–wake cycling after a small deep-brain lesion. The “central regulator” affected is the:
A. Hypothalamus
B. Thalamus
C. Cerebellum
D. Medulla

back 3

A. Hypothalamus

front 4

Which set best represents core hypothalamic functions described in your notes?
A. Motor, sensory, language, memory
B. Balance, hearing, vision, olfaction
C. Homeostatic, endocrine, autonomic, limbic
D. Pain, touch, proprioception, reflexes

back 4

C. Homeostatic, endocrine, autonomic, limbic

front 5

The embryologic structure formed by thickened ectoderm on the pharyngeal roof that invaginates as Rathke’s pouch becomes the:
A. Posterior pituitary
B. Anterior pituitary
C. Mammillary bodies
D. Cavernous sinus

back 5

B. Anterior pituitary

front 6

An evagination of the floor of the developing ventricular system gives rise to the:
A. Posterior pituitary
B. Anterior pituitary
C. Diaphragma sella
D. Sphenoid sinus

back 6

A. Posterior pituitary

front 7

Release of hormones from the anterior pituitary is controlled by the hypothalamus through a:
A. Direct synaptic projection
B. CSF diffusion pathway
C. Peripheral reflex arc
D. Specialized portal system

back 7

D. Specialized portal system

front 8

Which pituitary region contains glandular cells that secrete and synthesize its own hormones?
A. Pituitary stalk
B. Median eminence
C. Anterior pituitary
D. Posterior pituitary

back 8

C. Anterior pituitary

front 9

A neuroanatomy lab identifies a structure composed largely of axons and nerve terminals whose cell bodies lie in the hypothalamus. This is the:
A. Posterior pituitary
B. Anterior pituitary
C. Diaphragma sella
D. Sphenoid sinus

back 9

A. Posterior pituitary

front 10

The hypothalamus is a component of the:
A. Telencephalon
B. Diencephalon
C. Metencephalon
D. Myelencephalon

back 10

B. Diencephalon

front 11

The hypothalamus forms the walls and floor of the inferior portion of the:
A. Lateral ventricle
B. Fourth ventricle
C. Cerebral aqueduct
D. Third ventricle

back 11

D. Third ventricle

front 12

The shallow groove separating hypothalamus from thalamus along the third ventricle wall is the:
A. Central sulcus
B. Lateral sulcus
C. Hypothalamic sulcus
D. Calcarine sulcus

back 12

C. Hypothalamic sulcus

front 13

On gross anatomy, a “gray protuberance” bulge between the optic chiasm and mammillary bodies is the:
A. Infundibulum
B. Tuber cinereum
C. Median eminence
D. Periventricular nucleus

back 13

B. Tuber cinereum

front 14

The paired structures forming the posterior portion of the hypothalamus are the:
A. Mammillary bodies
B. Optic chiasm
C. Hypothalamic sulcus
D. Cavernous sinus

back 14

A. Mammillary bodies

front 15

The “funnel” that arises from the tuber cinereum and continues inferiorly as the pituitary stalk is the:
A. Median eminence
B. Tuber cinereum
C. Diaphragma sella
D. Infundibulum

back 15

D. Infundibulum

front 16

During evaluation of hypophyseal portal flow, the elevated anterior infundibular region where hypothalamic neurons release regulating factors into portal vessels is the:
A. Mammillary bodies
B. Periventricular nucleus
C. Median eminence
D. Hypothalamic sulcus

back 16

C. Median eminence

front 17

In a transsphenoidal surgical anatomy briefing, the pituitary fossa is described as being bounded by the:
A. Anterior and posterior commissures
B. Anterior and posterior clinoids
C. Superior and inferior turbinates
D. Medial and lateral pterygoids

back 17

B. Anterior and posterior clinoids

front 18

The “saddle” structure referenced with the anterior and posterior clinoid processes is the:
A. Cribriform plate
B. Jugular foramen
C. Foramen magnum
D. Sella turcica

back 18

D. Sella turcica

front 19

A surgeon approaches the pituitary from below; the sinus immediately inferior to the sella turcica is the:
A. Sphenoid sinus
B. Frontal sinus
C. Maxillary sinus
D. Ethmoid sinus

back 19

A. Sphenoid sinus

front 20

Within the pituitary fossa, the pituitary gland is surrounded by:
A. Pia mater
B. Arachnoid mater
C. Dura mater
D. Ependymal lining

back 20

C. Dura mater

front 21

The dura covering the superior portion of the pituitary fossa is called the:
A. Falx cerebri
B. Diaphragma sella
C. Tentorium cerebelli
D. Ligamentum flavum

back 21

B. Diaphragma sella

front 22

The pituitary fossa is bounded laterally on both sides by the:
A. Straight sinus
B. Sigmoid sinus
C. Transverse sinus
D. Cavernous sinus

back 22

D. Cavernous sinus

front 23

A sellar mass expands posteriorly and inferiorly and compresses the optic chiasm. The most likely deficit is:
A. Bitemporal hemianopia
B. Homonymous hemianopia
C. Central scotoma
D. Monocular blindness

back 23

A. Bitemporal hemianopia

front 24

The most medial hypothalamic nucleus, closest to the third ventricle, is the:
A. Lateral nucleus
B. Arcuate nucleus
C. Periventricular nucleus
D. Ventromedial nucleus

back 24

C. Periventricular nucleus

front 25

The medial forebrain bundle (MFB) is a diffuse fiber system running through the:
A. Arcuate nucleus region
B. Preoptic area
C. Lateral hypothalamic area
D. Mammillary bodies

back 25

C. Lateral hypothalamic area

front 26

The preoptic area is derived embryologically from the:
A. Telencephalon
B. Diencephalon
C. Mesencephalon
D. Rhombencephalon

back 26

A. Telencephalon

front 27

Specialized retinal ganglion cells containing melanopsin signal day–night via the retinohypothalamic tract to the:
A. Arcuate nucleus
B. Ventromedial nucleus
C. Tuberomammillary nucleus
D. Suprachiasmatic nucleus

back 27

D. Suprachiasmatic nucleus

front 28

A lesion limited to the tuberal (middle) hypothalamus would most directly involve:
A. Medial and intermediate mammillary
B. Arcuate, ventromedial, dorsomedial
C. Preoptic, suprachiasmatic, supraoptic
D. Posterior nucleus, lateral mammillary

back 28

B. Arcuate, ventromedial, dorsomedial

front 29

A hypothalamic nucleus projecting to the median eminence to control the anterior pituitary is the:
A. Arcuate nucleus
B. Suprachiasmatic nucleus
C. Posterior hypothalamic nucleus
D. Lateral mammillary nucleus

back 29

A. Arcuate nucleus

front 30

The posterior (mammary) hypothalamic region includes:
A. Arcuate, ventromedial, dorsomedial, nuclei
B. Preoptic region nuclei
C. Mammillary nuclei, posterior nucleus
D. Supraoptic paraventricular nuclei

back 30

C. Mammillary nuclei, posterior nucleus

front 31

The subiculum projects to the mammillary bodies via the:
A. Stria terminalis
B. Fornix
C. Mammillothalamic tract
D. Ventral amygdalofugal pathway

back 31

B. Fornix

front 32

The mammillothalamic tract terminates primarily in the:
A. Anterior thalamic nucleus
B. Mediodorsal thalamic nucleus
C. Ventral posterolateral nucleus
D. Lateral geniculate nucleus

back 32

A. Anterior thalamic nucleus

front 33

Which list matches the 4 major hypothalamic regions in these notes?
A. Anterior, middle, posterior, suprachiasmatic
B. Periventricular, lateral, preoptic, medial
C. Mammillary, arcuate, VM, DM
D. Supraoptic, tuberal, mammillary, preoptic

back 33

B. Periventricular, lateral, preoptic, medial

front 34

Two hypothalamus-to-amygdala pathways are:
A. Fornix + mammillothalamic
B. Retinohypothalamic + fornix
C. Stria terminalis + ventral amygdalofugal
D. Mammillothalamic + cingulum

back 34

C. Stria terminalis + ventral amygdalofugal

front 35

A child has gelastic seizures (laughing spells) with behavioral and cognitive disturbances; imaging shows a rare benign mass. Most likely diagnosis:
A. Craniopharyngioma
B. Hypothalamic hamartoma
C. Pituitary macroadenoma
D. Temporal lobe glioma

back 35

B. Hypothalamic hamartoma

front 36

Ventrolateral preoptic area (VLPO) GABAergic neurons promote nonREM sleep primarily by:
A. Inhibiting arousal systems
B. Activating orexin neurons
C. Activating TMN histamine
D. Increasing sympathetic outflow

back 36

A. Inhibiting arousal systems

front 37

A focal lesion of the anterior hypothalamus involving ventrolateral preoptic area (VLPO) most likely causes:
A. Hypersomnia
B. Hyperphagia
C. Insomnia
D. Poikilothermia

back 37

C. Insomnia

front 38

Lesions of the posterior hypothalamus destroying Tuberomammillary nucleus (TMN) histaminergic neurons and orexin neurons tend to cause:
A. Insomnia
B. Weight loss
C. Hyperthermia
D. Hypersomnia

back 38

D. Hypersomnia

front 39

ventrolateral preoptic area (VLPO) promotes non-REM sleep primarily by:
A. Inhibiting arousal systems
B. Activating orexin neurons
C. Activating histamine neurons
D. Increasing sympathetic outflow

back 39

A. Inhibiting arousal systems

front 40

Damage to the ventromedial nucleus is most likely to cause:
A. Obesity
B. Weight loss
C. Hypersomnia
D. Polydipsia

back 40

A. Obesity

front 41

An adipose-derived hormone binding Ob receptors reduces appetite and obesity risk. This hormone is:
A. Ghrelin
B. Orexin
C. Histamine
D. Leptin

back 41

D. Leptin

front 42

A gastric mucosal hormone that binds hypothalamus and stimulates appetite is:
A. Leptin
B. Histamine
C. Ghrelin
D. Orexin

back 42

C. Ghrelin

front 43

Activation of osmoreceptors in anterior hypothalamic regions produces:
A. Thirst
B. Satiety
C. NonREM sleep
D. Heat conservation

back 43

A. Thirst

front 44

A lesion of the lateral hypothalamus tends to decrease:
A. Sweat production
B. Water intake
C. Appetite inhibition
D. Circadian timing

back 44

B. Water intake

front 45

The region most implicated in detecting increased temperature and activating heat dissipation is the:
A. Posterior hypothalamus
B. Mammillary bodies
C. Arcuate nucleus
D. Anterior hypothalamus

back 45

D. Anterior hypothalamus

front 46

Bilateral posterior hypothalamic lesions can cause poikilothermia (temperature varies with environment) because of:
A. Loss heat dissipation only
B. Loss conservation and dissipation pathways
C. Loss appetite inhibition only
D. Loss sleep arousal balance

back 46

B. Loss conservation and dissipation pathways

front 47

Choose the correct two: portal first plexus site and cavernous sinus primary drainage route:
A. infundibulum; sigmoid sinus
B. tuber cinereum; straight sinus
C. median eminence; petrosal sinuses
D. mammillary; transverse sinus

back 47

C. median eminence; petrosal sinuses

front 48

Oxytocin and vasopressin enter systemic blood from the posterior pituitary via a:
A. Arterial sinusoid plexus
B. Portal venous plexus
C. Capillary plexus
D. Lymphatic plexus

back 48

C. Capillary plexus

front 49

A slow-growing, histologically benign tumor from anterior pituitary glandular epithelium is a:
A. Pituitary adenoma
B. Craniopharyngioma
C. Meningioma
D. Chordoma

back 49

A. Pituitary adenoma

front 50

Even pituitary microadenomas smaller than ____ mm can cause major endocrine abnormalities:
A. 10 mm
B. 5 mm
C. 2 mm
D. 1 mm

back 50

D. 1 mm

front 51

If untreated, large pituitary adenomas can eventually cause:
A. Seizures, temporal gliosis
B. Hydrocephalus, brainstem compression
C. Meningitis, CSF leak
D. SAH, vasospasm

back 51

B. Hydrocephalus, brainstem compression

front 52

The most commonly secreted hormone in pituitary adenomas (~50%) is:
A. Prolactin
B. ACTH
C. TSH
D. FSH

back 52

A. Prolactin

front 53

After prolactin, the next most common pituitary adenoma secretion is:
A. TSH
B. LH
C. ACTH
D. Growth hormone

back 53

D. Growth hormone

front 54

Management options for pituitary adenomas include:
A. Chemotherapy, surgery, observation
B. Medication, surgery, radiotherapy
C. Antibiotics, steroids, shunting
D. Embolization, surgery, anticoagulation

back 54

B. Medication, surgery, radiotherapy

front 55

Prolactin-secreting adenomas often respond well to:
A. Somatostatin analog therapy
B. Glucocorticoid antagonist therapy
C. Dopamine agonist therapy
D. Thyroid hormone replacement

back 55

C. Dopamine agonist therapy

front 56

Which pair are dopaminergic agonists used for prolactinomas?
A. Propranolol, methimazole
B. Desmopressin, vasopressin
C. Octreotide, ketoconazole
D. Bromocriptine, cabergoline

back 56

D. Bromocriptine, cabergoline

front 57

Initial treatment for non–prolactin secreting pituitary adenomas is usually:
A. Surgery
B. Dopamine agonists
C. Observation only
D. Steroid suppression

back 57

A. Surgery

front 58

A sellar adenoma is removed using a standard route; suprasellar extension may require a different route. Best pairing is:
A. Intracranial; transsphenoidal if suprasellar
B. Transorbital; endonasal if suprasellar
C. Transsphenoidal; intracranial if suprasellar
D. Transventricular; suboccipital if suprasellar

back 58

C. Transsphenoidal; intracranial if suprasellar

front 59

A patient has moon facies, truncal fat, hirsutism, purple striae, thin skin, HTN, diabetes, edema, infections, osteoporosis, femoral head AVN, amenorrhea, low libido, fatigue, and mood changes. Most likely syndrome:
A. Addison syndrome
B. Cushing syndrome
C. SIADH
D. Hyperthyroidism

back 59

B. Cushing syndrome

front 60

Radiotherapy mainly reserved for pituitary adenomas failing surgery or in high operative risk most commonly uses:
A. Whole-brain radiotherapy
B. Brachytherapy implants
C. Chemoradiation protocols
D. Gamma knife radiotherapy

back 60

D. Gamma knife radiotherapy

front 61

A woman with pituitary adenoma has galactorrhea, infertility, weight gain, hair loss, and decreased libido. Most typical additional finding:
A. Amenorrhea
B. Heat intolerance
C. Polyuria
D. Resting tremor

back 61

A. Amenorrhea

front 62

A man with pituitary adenoma has infertility, weight gain, hair loss, and decreased libido. Most typical additional finding:
A. Hyperthyroidism
B. Hypogonadism
C. Hyperkalemia
D. Polycythemia

back 62

B. Hypogonadism

front 63

Suspected ACTH-dependent hypercortisolism: dexamethasone is given at midnight and next-morning cortisol (or urine metabolites) is suppressed. This most strongly supports:
A. Ectopic ACTH tumor
B. Adrenal cortisol tumor
C. Pituitary ACTH adenoma
D. Exogenous glucocorticoids

back 63

C. Pituitary ACTH adenoma

front 64

A patient with acromegaly has carpal tunnel syndrome, arthritis, hypertension, and diabetes. Which additional problem from the same note set is also expected?
A. Infertility
B. Hematuria
C. Diplopia
D. Hyperkalemia

back 64

A. Infertility

front 65

Best diagnostic support for acromegaly per this note set is:
A. Low IGF-1, low GH
B. High TSH, low T4
C. High cortisol, low ACTH
D. High IGF-1, High GH, MRI

back 65

D. High IGF-1, High GH, MRI

front 66

A patient with hypercortisolism has very low ACTH levels. This usually suggests a(n):
A. Pituitary source
B. Adrenal source
C. Ectopic ACTH source
D. Hypothalamic source

back 66

B. Adrenal source

front 67

TSH-secreting pituitary adenomas are a rare cause of:
A. Hypothyroidism
B. Adrenal insufficiency
C. Hyperthyroidism
D. Diabetes insipidus

back 67

C. Hyperthyroidism

front 68

ACTH-secreting pituitary adenomas cause:
A. Nelson syndrome
B. Addison disease
C. Conn syndrome
D. Cushing disease

back 68

D. Cushing disease

front 69

“Cushing syndrome” refers to clinical features of:
A. Glucocorticoid excess, any cause
B. Mineralocorticoid excess, any cause
C. Catecholamine excess, any cause
D. Thyroid hormone excess, any cause

back 69

A. Glucocorticoid excess, any cause

front 70

Endogenous Cushing syndrome is most commonly due to:
A. Primary adrenal tumors (~85%)
B. ACTH overproduction (~85%)
C. Exogenous steroids (~85%)
D. Androgen excess (~85%)

back 70

B. ACTH overproduction (~85%)

front 71

Catheters passed femoral → internal jugular → inferior petrosal sinuses show a 3-fold ACTH rise centrally versus peripheral. This indicates:
A. Adrenal cortisol tumor
B. Ectopic ACTH tumor
C. Pituitary ACTH adenoma
D. Exogenous glucocorticoids

back 71

C. Pituitary ACTH adenoma

front 72

Which set lists the more common causes of hyperthyroidism?
A. Hashimoto, iodine deficiency, ablation
B. ACTH adenoma, thyroiditis, Graves
C. Graves, thyroiditis, toxic multinodular goiter, thyroid adenoma
D. TSH deficiency, hypopituitarism, thyroidectomy

back 72

C. Graves, thyroiditis, toxic multinodular goiter, thyroid adenoma

front 73

A patient has proptosis and dermopathy; pathology shows inflammatory involvement of thyroid, skin, and orbital tissues with extraocular muscle fibrosis. Most likely diagnosis?
A. Graves disease
B. Toxic multinodular goiter
C. Subacute thyroiditis
D. Hashimoto thyroiditis

back 73

A. Graves disease

front 74

Which set best matches common causes of hypothyroidism?
A. Graves, thyroid adenoma, thyroiditis
B. Toxic multinodular goiter, Graves
C. Iodine excess, TSH adenoma, lithium
D. Autoimmune thyroid disease, iodine deficiency, prior ablation

back 74

D. Autoimmune thyroid disease, iodine deficiency, prior ablation

front 75

A pituitary lesion is found on MRI done for migraines; labs are normal and the patient is asymptomatic. Best term?
A. Prolactinoma
B. Pituitary incidentaloma
C. Pituitary apoplexy
D. Panhypopituitarism

back 75

B. Pituitary incidentaloma

front 76

Large volumes of dilute urine due to ADH deficiency or renal ADH resistance best defines:
A. Diabetes insipidus
B. SIADH
C. Cerebral salt wasting
D. Primary polydipsia

back 76

A. Diabetes insipidus

front 77

DI is established in polyuria when urine osmolality is ____ despite plasma osmolality ____:
A. High; increased
B. High; decreased
C. Low; increased
D. Low; decreased

back 77

C. Low; increased

front 78

After SQ vasopressin, urine osmolality rises in neurogenic DI but not in:
A. Central DI
B. Nephrogenic DI
C. Primary polydipsia
D. Psychogenic polydipsia

back 78

B. Nephrogenic DI

front 79

Best treatment approach for DI in these notes is:
A. Fluid restriction only
B. Loop diuretic therapy
C. Steroid replacement only
D. SQ or intranasal vasopressin analog

back 79

D. SQ or intranasal vasopressin analog

front 80

Hyponatremia with inappropriately elevated urine osmolality most strongly suggests:
A. Diabetes insipidus
B. Cerebral salt wasting
C. Primary polydipsia
D. SIADH

back 80

D. SIADH

front 81

A pituitary tumor undergoes spontaneous hemorrhage. This event is:
A. Pituitary incidentaloma
B. Panhypopituitarism
C. Pituitary apoplexy
D. SIADH

back 81

C. Pituitary apoplexy

front 82

A pituitary tumor causes bitemporal hemianopia by compressing the:
A. Optic chiasm
B. Optic tract
C. Lateral geniculate body
D. Optic radiation

back 82

A. Optic chiasm

front 83

Which list matches the 4 major hypothalamic regions in these notes?
A. Anterior, middle, posterior, suprachiasmatic
B. Periventricular, lateral, preoptic, medial
C. Mammillary, arcuate, VM, DM
D. Supraoptic, tuberal, mammillary, preoptic

back 83

B. Periventricular, lateral, preoptic, medial

front 84

Fibers of the medial forebrain bundle run through which hypothalamic area?
A. Periventricular area
B. Preoptic area
C. Lateral hypothalamic area
D. Medial hypothalamic area

back 84

C. Lateral hypothalamic area

front 85

Medial and lateral hypothalamic areas are separated by fibers of the:
A. Fornix
B. Stria terminalis
C. Mammillothalamic tract
D. Retinohypothalamic tract

back 85

A. Fornix

front 86

The separating fornix fibers pass through hypothalamus en route to the:
A. Median eminence
B. Optic chiasm
C. Anterior thalamic nucleus
D. Mammillary bodies

back 86

D. Mammillary bodies

front 87

Which is NOT a medial hypothalamic subregion?
A. Anterior supraoptic region
B. Preoptic area
C. Middle tuberal region
D. Posterior mammillary region

back 87

B. Preoptic area

front 88

Nuclei in the anterior (supraoptic) medial hypothalamus include:
A. Anterior, hypothalamic, supraoptic, paraventricular, suprachiasmatic
B. Arcuate, ventromedial, dorsomedial nuclei
C. Medial, intermediate, lateral, mammillary nuclei
D. Posterior nucleus, arcuate nucleus

back 88

A. Anterior, hypothalamic, supraoptic, paraventricular, suprachiasmatic

front 89

Nuclei in the middle (tuberal) medial hypothalamus include:
A. Supraoptic, paraventricular, suprachiasmatic nuclei
B. Medial, intermediate, lateral, mammillary nuclei
C. Preoptic, periventricular, lateral nuclei
D. Arcuate, ventromedial, dorsomedial nuclei

back 89

D. Arcuate, ventromedial, dorsomedial nuclei

front 90

To control anterior pituitary, arcuate nucleus projects to the:
A. Posterior pituitary
B. Median eminence
C. Diaphragma sella
D. Cavernous sinus

back 90

D. Cavernous sinus

front 91

Descending autonomic fibers originate mainly from the:
A. Arcuate nucleus
B. Tuberomammillary nucleus
C. Paraventricular nucleus
D. Lateral mammillary nucleus

back 91

C. Paraventricular nucleus

front 92

After traveling in the medial forebrain bundle, descending autonomic fibers pass through:
A. Optic tract
B. Mammillothalamic tract
C. Cingulate gyrus
D. Dorsolateral brainstem

back 92

D. Dorsolateral brainstem

front 93

Hypothalamic autonomic outputs ultimately influence:
A. Preganglionic, parasympathetic and IML sympathetic
B. Upper motor neurons only
C. Dorsal root ganglia only
D. Cerebellar nuclei only

back 93

A. Preganglionic, parasympathetic and IML sympathetic

front 94

Preganglionic sympathetic neurons targeted by hypothalamus are located in:
A. Brainstem parasympathetic nuclei
B. Thoracolumbar IML cell column
C. Cervical dorsal horn
D. Sacral anterior horn

back 94

B. Thoracolumbar IML cell column

front 95

The hippocampal formation projects to mammillary bodies via the:
A. Stria terminalis
B. Ventral amygdalofugal pathway
C. Fornix
D. Retinohypothalamic tract

back 95

C. Fornix

front 96

Mammillary bodies project toward thalamus via the:
A. Mammillothalamic tract
B. Stria terminalis
C. Fornix
D. Medial forebrain bundle

back 96

A. Mammillothalamic tract

front 97

Limbic–hypothalamic pathways are key for:
A. Emotional influence on autonomics
B. Visual field integration
C. Voluntary motor planning
D. Auditory localization

back 97

A. Emotional influence on autonomics

front 98

Hypothalamic hamartomas may cause precocious puberty by:
A. Dopamine excess release
B. Releasing hormone secretion
C. Aldosterone secretion
D. ADH hypersecretion

back 98

B. Releasing hormone secretion

front 99

VLPO promotes non-REM sleep primarily by:
A. Inhibiting arousal systems
B. Activating orexin neurons
C. Activating histamine neurons
D. Increasing sympathetic outflow

back 99

A. Inhibiting arousal systems

front 100

Posterior hypothalamic lesions cause hypersomnia by destroying:
A. VLPO GABA neurons
B. TMN histamine and orexin neurons
C. Arcuate neurosecretory cells
D. Suprachiasmatic clock neurons

back 100

B. TMN histamine and orexin neurons

front 101

TMN histaminergic and orexin neurons are components of the:
A. Non-REM generator
B. Endocrine portal pathway
C. Arousal system
D. Visual relay pathway

back 101

C. Arousal system

front 102

Anterior pituitary hormone release is controlled via the:
A. Hypophysial portal system
B. Cavernous sinus drainage
C. Mammillothalamic tract
D. Retinohypothalamic tract

back 102

A. Hypophysial portal system

front 103

Pituitary arterial blood primarily comes from the:
A. Vertebral artery branches
B. Middle meningeal artery branches
C. Superior and inferior hypophysial arteries
D. Anterior cerebral artery branches

back 103

C. Superior and inferior hypophysial arteries

front 104

The pituitary intermediate lobe can produce which pair?
A. ADH and oxytocin
B. POMC and MSH
C. GH and prolactin
D. ACTH and cortisol

back 104

B. POMC and MSH

front 105

A pituitary adenoma is best described as a:
A. Posterior axonal terminal tumor
B. Metastatic sellar lesion
C. Granulomatous hypophysitis mass
D. Benign anterior epithelial tumor

back 105

D. Benign anterior epithelial tumor

front 106

Pituitary adenomas make up about:
A. 12% intracranial neoplasms
B. 1% intracranial neoplasms
C. 30% intracranial neoplasms
D. 5% intracranial neoplasms

back 106

A. 12% intracranial neoplasms

front 107

Most pituitary adenomas are:
A. Nonfunctioning, clinically silent
B. Nonfunctioning, compressive only
C. Functioning, hormone-secreting
D. Inflammatory, autoimmune-mediated

back 107

C. Functioning, hormone-secreting

front 108

Nonfunctioning adenoma headache is attributed to irritation of pain fibers in the:
A. Adjacent cavernous region
B. Optic tract region
C. Sphenoid sinus roof
D. Third ventricle wall

back 108

A. Adjacent cavernous region

front 109

A nonfunctioning sellar mass causes progressive peripheral vision loss. Most likely deficit?
A. Central scotoma
B. Homonymous hemianopia
C. Monocular blindness
D. Bitemporal hemianopia

back 109

D. Bitemporal hemianopia

front 110

The first capillary plexus of the hypophysial portal system occurs in the:
A. Posterior pituitary
B. Cavernous sinus
C. Median eminence
D. Diaphragma sella

back 110

C. Median eminence

front 111

Which set correctly lists nuclei projecting to the median eminence?
A. Arcuate, ventromedial, dorsomedial, SCN
B. Supraoptic, posterior, lateral, mammillary
C. Mammillary, posterior, arcuate, DMN
D. Arcuate, periventricular, medial preoptic, paraventricular

back 111

D. Arcuate, periventricular, medial preoptic, paraventricular

front 112

A patient with GH-secreting adenoma needs drug therapy. Best choice:
A. Cabergoline, dopamine agonist
B. Desmopressin, V2 agonist
C. Dexamethasone, glucocorticoid
D. Octreotide, somatostatin analog

back 112

D. Octreotide, somatostatin analog

front 113

Standard surgical approach used for most pituitary tumors is:
A. Transsphenoidal resection
B. Suboccipital craniotomy
C. Pterional craniotomy
D. Transventricular approach

back 113

A. Transsphenoidal resection

front 114

In the transsphenoidal approach, the pituitary fossa is entered through the:
A. Frontal sinus floor
B. Ethmoid sinus roof
C. Sphenoid sinus roof
D. Maxillary sinus roof

back 114

C. Sphenoid sinus roof

front 115

Prolactinomas suppress sexual function primarily because prolactin:
A. Stimulates GnRH release
B. Inhibits LHRH, lowers LH/FSH
C. Increases LH, decreases FSH
D. Blocks androgen receptors directly

back 115

B. Inhibits LHRH, lowers LH/FSH

front 116

Petrosal sinus sampling is most useful to:
A. Diagnose central pontine myelinolysis
B. Distinguish central vs nephrogenic DI
C. Confirm TSH-secreting adenoma
D. Separate pituitary vs ectopic ACTH

back 116

D. Separate pituitary vs ectopic ACTH

front 117

During petrosal sinus sampling, catheters are advanced:
A. Femoral → jugular → inferior petrosal
B. Femoral → carotid → cavernous sinus
C. Jugular → femoral → petrosal sinuses
D. Subclavian → vertebral → basilar

back 117

A. Femoral → jugular → inferior petrosal

front 118

High-dose dexamethasone that fails to suppress ACTH most suggests:
A. Pituitary ACTH adenoma
B. Exogenous glucocorticoid exposure
C. Nonpituitary ACTH tumor
D. Physiologic stress response

back 118

C. Nonpituitary ACTH tumor

front 119

Central (neurogenic) DI is most classically due to:
A. Neurosurgery, trauma, infiltrative lesions
B. Renal collecting duct mutation
C. Excess aldosterone secretion
D. Primary adrenal insufficiency

back 119

A. Neurosurgery, trauma, infiltrative lesions

front 120

Nephrogenic DI is best explained by:
A. Excess ADH secretion
B. Lack of thirst perception
C. Supraoptic neuron degeneration
D. Renal insensitivity to ADH

back 120

D. Renal insensitivity to ADH

front 121

A posterior pituitary lesion usually causes DI only when:
A. Optic chiasm is compressed
B. High stalk injury causes degeneration
C. Cavernous sinus is irritated
D. Median eminence is infarcted

back 121

B. High stalk injury causes degeneration

front 122

After subcutaneous ADH, urine osmolality rises in:
A. Primary polydipsia
B. SIADH
C. Central diabetes insipidus
D. Nephrogenic diabetes insipidus

back 122

C. Central diabetes insipidus

front 123

Drug of choice for SIADH in this note set:
A. Bromocriptine
B. Octreotide
C. Desmopressin
D. Vaprisol

back 123

D. Vaprisol

front 124

Overly rapid correction of severe SIADH with hypertonic saline risks:
A. Subarachnoid hemorrhage
B. Central pontine myelinolysis
C. Optic neuritis
D. Temporal lobe seizures

back 124

B. Central pontine myelinolysis

front 125

Sudden headache, meningeal signs, cavernous sinus syndrome, vision loss, hypotension, coma in a pituitary tumor patient suggests:
A. Cavernous sinus thrombosis
B. Migraine with aura
C. Pituitary apoplexy
D. Subacute thyroiditis

back 125

C. Pituitary apoplexy