Print Options

Card layout: ?

← Back to notecard set|Easy Notecards home page

Instructions for Side by Side Printing
  1. Print the notecards
  2. Fold each page in half along the solid vertical line
  3. Cut out the notecards by cutting along each horizontal dotted line
  4. Optional: Glue, tape or staple the ends of each notecard together
  1. Verify Front of pages is selected for Viewing and print the front of the notecards
  2. Select Back of pages for Viewing and print the back of the notecards
    NOTE: Since the back of the pages are printed in reverse order (last page is printed first), keep the pages in the same order as they were after Step 1. Also, be sure to feed the pages in the same direction as you did in Step 1.
  3. Cut out the notecards by cutting along each horizontal and vertical dotted line
To print: Ctrl+PPrint as a list

228 notecards = 57 pages (4 cards per page)

Viewing:

Path 22a

front 1

A patient has pelvic pain and purulent-appearing discharge. Most likely pathogen?
A. HSV-1
B. VZV
C. HSV-2
D. CMV

back 1

C. HSV-2

front 2

During active genital HSV, latency is established in:
A. Lumbosacral nerve ganglia
B. Dorsal root ganglia (cervical)
C. Trigeminal ganglion
D. Enteric plexuses

back 2

A. Lumbosacral nerve ganglia

front 3

Pregnant patient with primary active genital HSV at delivery. Best management?
A. Vaginal delivery, observe lesions
B. Vacuum-assisted vaginal delivery
C. Forceps-assisted vaginal delivery
D. Cesarean section

back 3

D. Cesarean section

front 4

Molluscum contagiosum is caused by a:
A. Herpesvirus
B. Poxvirus
C. Papillomavirus
D. Adenovirus

back 4

B. Poxvirus

front 5

MCV-2 is most commonly transmitted via:
A. Sexual contact
B. Fomites
C. Respiratory droplets
D. Insect vectors

back 5

A. Sexual contact

front 6

Pearly dome-shaped papules with central dimple suggest:
A. Condyloma acuminatum
B. Genital herpes
C. Molluscum contagiosum
D. Syphilitic chancre

back 6

C. Molluscum contagiosum

front 7

Molluscum viral inclusions are located in the:
A. Nucleolus
B. Cytoplasm
C. Mitochondria
D. ER lumen

back 7

B. Cytoplasm

front 8

Thick vulvovaginal erythema and swelling with “curd-like” discharge is most associated with:
A. Trichomonas vaginalis
B. HSV-2
C. Molluscum contagiosum
D. Candida

back 8

D. Candida

front 9

The discharge classically described for Candida is:
A. Curd-like discharge
B. Thin gray discharge
C. Frothy green discharge
D. Bloody mucoid discharge

back 9

A. Curd-like discharge

front 10

Trichomonas vaginalis is best described as a:
A. Encapsulated yeast
B. Gram-negative diplococcus
C. Flagellated protozoan
D. Obligate intracellular bacterium

back 10

C. Flagellated protozoan

front 11

Post–spontaneous/induced abortion infections that can cause PID are often:
A. Chlamydial infections
B. Puerperal infections
C. Viral infections
D. Mycobacterial infections

back 11

B. Puerperal infections

front 12

Puerperal infections spread upward via:
A. Direct arterial spread
B. Perineural spread
C. Lymphatic and venous channels
D. Transplacental spread

back 12

C. Lymphatic and venous channels

front 13

Compared with gonococcal PID, puerperal infections tend to inflame:
A. Deeper organ layers
B. Superficial mucosa
C. Cervical epithelium
D. Serosal surfaces

back 13

A. Deeper organ layers

front 14

Smooth white vulvar plaques that enlarge/coalesce suggest:
A. Vulvar papillomatosis
B. Lichen sclerosus
C. Squamous papilloma
D. Trichomoniasis

back 14

B. Lichen sclerosus

front 15

Advanced lichen sclerosus can lead to:
A. Labial hypertrophy
B. Cervical dilation
C. Endometrial hypertrophy
D. Constricted vaginal orifice

back 15

D. Constricted vaginal orifice

front 16

Key histologic feature of lichen sclerosus is:
A. Epidermal thinning
B. Epidermal acanthosis
C. Full-thickness atypia
D. Koilocytosis

back 16

A. Epidermal thinning

front 17

Squamous cell hyperplasia (lichen simplex chronicus) is driven by:
A. HPV integration
B. Chronic scratching/rubbing
C. Estrogen deficiency
D. Acute gonococcal infection

back 17

B. Chronic scratching/rubbing

front 18

Squamous cell hyperplasia is characterized by:
A. Dermal mucin deposition
B. Epidermal thinning
C. Loss of rete ridges
D. Epidermal thickening

back 18

D. Epidermal thickening

front 19

Both lichen sclerosus and squamous hyperplasia often show:
A. Koilocytosis
B. Full-thickness dysplasia
C. Hyperkeratosis
D. Caseating granulomas

back 19

C. Hyperkeratosis

front 20

Vulvar squamous papillomas are best described as:
A. Malignant ulcerative tumors
B. Benign exophytic papilloma
C. Pigmented melanocytic lesions
D. Deep infiltrative nodules

back 20

B. Benign exophytic papilloma

front 21

Most common histologic type of vulvar cancer is:
A. Basal cell carcinoma
B. Adenocarcinoma
C. Squamous cell carcinoma
D. Melanoma

back 21

C. Squamous cell carcinoma

front 22

Basaloid and warty vulvar carcinomas arise from:
A. Differentiated VIN
B. Lichen sclerosus
C. Squamous papillomatosis
D. Classic VIN

back 22

D. Classic VIN

front 23

Keratinizing vulvar SCC most often arises from:
A. Classic VIN
B. Squamous papilloma
C. Papillary hidradenoma
D. Differentiated VIN

back 23

D. Differentiated VIN

front 24

Differentiated VIN is most associated with a history of:
A. Recurrent trichomoniasis
B. Chronic lichen sclerosus
C. Primary HSV infection
D. Molluscum contagiosum

back 24

B. Chronic lichen sclerosus

front 25

A sharply circumscribed nodule on labia majora/interlabial fold suggests:
A. Bartholin cyst
B. VIN lesion
C. Papillary hidradenoma
D. Condyloma lata

back 25

C. Papillary hidradenoma

front 26

Papillary hidradenoma histology shows:
A. Sheets of atypical keratinocytes
B. Koilocytes with perinuclear halos
C. Granulomatous inflammation
D. Two-layer glandular lining

back 26

D. Two-layer glandular lining

front 27

Basaloid and warty vulvar carcinomas are:
A. Unrelated to HPV
B. HPV-related
C. Always estrogen-driven
D. Always postmenopausal only

back 27

B. HPV-related

front 28

Basaloid and warty vulvar carcinomas typically occur:
A. At younger ages
B. Only after menopause
C. Only during pregnancy
D. Only in adolescence

back 28

A. At younger ages

front 29

A vulvar carcinoma subtype is not HPV-related. Which is it?
A. Basaloid squamous carcinoma
B. Warty squamous carcinoma
C. Keratinizing squamous carcinoma
D. Clear cell carcinoma

back 29

C. Keratinizing squamous carcinoma

front 30

Keratinizing vulvar SCC occurs most often in:
A. Older women
B. Teenagers
C. Children
D. Pregnant patients

back 30

A. Older women

front 31

Keratinizing vulvar SCC is best described as:
A. Rare, younger onset
B. Equal to warty types
C. Less common than basaloid
D. More common than warty

back 31

D. More common than warty

front 32

Pruritic red, crusted, maplike vulvar lesion suggests:
A. Lichen sclerosus
B. Extramammary Paget disease
C. Squamous papilloma
D. Condyloma lata

back 32

B. Extramammary Paget disease

front 33

Extramammary Paget disease is usually on the:
A. Labia majora
B. Cervix
C. Endocervix
D. Vaginal fornix

back 33

A. Labia majora

front 34

A lateral vaginal wall cyst from duct rests is:
A. Müllerian cyst
B. Gartner duct cyst
C. Bartholin cyst
D. Nabothian cyst

back 34

B. Gartner duct cyst

front 35

Gartner duct cysts are most often found on the:
A. Posterior vaginal wall
B. Cervical os
C. Labia minora
D. Lateral vaginal walls

back 35

D. Lateral vaginal walls

front 36

Gartner duct cysts are typically:
A. Submucosal, fluid-filled cysts
B. Solid ulcerated plaques
C. Keratin-filled epidermoid cysts
D. Deep infiltrative masses

back 36

A. Submucosal, fluid-filled cysts

front 37

Virtually all primary vaginal cancers are:
A. Adenocarcinoma
B. Melanoma
C. Squamous cell carcinoma
D. Leiomyosarcoma

back 37

C. Squamous cell carcinoma

front 38

Primary vaginal SCC is strongly associated with:
A. Low-risk HPV
B. EBV infection
C. HSV infection
D. High-risk HPV

back 38

D. High-risk HPV

front 39

Vaginal SCC often arises from a premalignant:
A. CIN
B. VAIN
C. VIN
D. AIS

back 39

B. VAIN

front 40

The cervical site most susceptible to HPV is:
A. Mature ectocervix
B. Endocervical glands
C. Immature metaplastic cells
D. Myometrial smooth muscle

back 40

C. Immature metaplastic cells

front 41

HPV primarily infects which epithelial cells?
A. Immature basal cells
B. Mature superficial cells
C. Keratinized surface cells
D. Columnar ciliated cells

back 41

A. Immature basal cells

front 42

HPV cannot infect directly the:
A. Basal squamous cells
B. Mature superficial squamous cells
C. Immature metaplastic cells
D. Parabasal squamous cells

back 42

B. Mature superficial squamous cells

front 43

HPV infection of vagina/vulva usually requires:
A. Intact epithelium
B. High progesterone
C. High estrogen
D. Surface epithelial damage

back 43

D. Surface epithelial damage

front 44

Low-risk HPV dysregulates growth via:
A. Wnt pathway
B. Notch pathway
C. Hedgehog pathway
D. TGF-β pathway

back 44

B. Notch pathway

front 45

LSIL typically shows HPV replication that is:
A. Absent
B. Low
C. High
D. Integrated only

back 45

C. High

front 46

Most LSIL lesions:
A. Regress spontaneously
B. Metastasize early
C. Require hysterectomy
D. Progress rapidly

back 46

A. Regress spontaneously

front 47

In HSIL, HPV replication tends to be:
A. Very high
B. Unchanged
C. Variable
D. Low

back 47

D. Low

front 48

HSIL most characteristically shows:
A. Normal maturation
B. Increased maturation
C. Arrested epithelial maturation
D. Keratin pearl formation

back 48

C. Arrested epithelial maturation

front 49

HSIL carries a:
A. Negligible cancer risk
B. High cancer progression risk
C. Risk only in pregnancy
D. Risk only postmenopause

back 49

B. High cancer progression risk

front 50

A benign exophytic lesion causing spotting arises in the:
A. Ectocervix surface
B. Vaginal introitus
C. Labia majora
D. Endocervical canal

back 50

D. Endocervical canal

front 51

Endocervical polyps contain:
A. Dense collagen stroma
B. Caseating granulomas
C. Loose fibromyxoid stroma
D. Solid atypical nests

back 51

C. Loose fibromyxoid stroma

front 52

Endocervical polyps commonly present with:
A. Thick curd discharge
B. Irregular bleeding/spotting
C. Frothy green discharge
D. Vesicular vulvar pain

back 52

B. Irregular bleeding/spotting

front 53

Endocervical polyps are lined by:
A. Mucus-secreting endocervical glands
B. Keratinized squamous epithelium
C. Transitional urothelium
D. Ciliated tubal epithelium

back 53

A. Mucus-secreting endocervical glands

front 54

HPV reaches target cells mainly through:
A. Hematogenous spread
B. Lymphatic invasion
C. Epithelial breaks at SCJ
D. Transplacental passage

back 54

C. Epithelial breaks at SCJ

front 55

HSIL reflects progressive cell-cycle deregulation by:
A. Candida
B. HPV
C. HSV
D. MCV

back 55

B. HPV

front 56

Gartner duct cysts derive from:
A. Müllerian duct
B. Urogenital sinus
C. Cloacal membrane
D. Wolffian duct

back 56

D. Wolffian duct

front 57

Which IHC pair is most associated with HPV-related SIL?
A. ER and PR
B. CD3 and CD20
C. Ki-67 and p16
D. PAS and mucicarmine

back 57

C. Ki-67 and p16

front 58

Why can Ki-67 appear in upper epithelium in HPV lesions?
A. E6/E7 block cell-cycle arrest
B. p53 hyperactivation halts mitosis
C. Estrogen withdrawal accelerates turnover
D. Hypoxia induces senescence pathways

back 58

A. E6/E7 block cell-cycle arrest

front 59

Most common HPV type in both LSIL/HSIL?
A. HPV-6
B. HPV-11
C. HPV-18
D. HPV-16

back 59

D. HPV-16

front 60

About what fraction of LSIL is HPV-associated?
A. About 20%
B. About 80%
C. About 40%
D. About 60%

back 60

B. About 80%

front 61

About what fraction of HSIL is HPV-associated?
A. Nearly 100%
B. About 80%
C. About 60%
D. About 40%

back 61

A. Nearly 100%

front 62

Most common histologic subtype of cervical cancer?
A. Small cell carcinoma
B. Adenosquamous carcinoma
C. Squamous cell carcinoma
D. Clear cell carcinoma

back 62

C. Squamous cell carcinoma

front 63

Second most common cervical cancer type is:
A. Neuroendocrine carcinoma
B. Adenocarcinoma
C. Squamous cell carcinoma
D. Sarcoma botryoides

back 63

B. Adenocarcinoma

front 64

Precursor lesion for cervical adenocarcinoma?
A. CIN III
B. Classic VIN
C. Differentiated VIN
D. Adenocarcinoma in situ

back 64

D. Adenocarcinoma in situ

front 65

Tumor with malignant glandular + squamous cells?
A. Adenosquamous carcinoma
B. Adenocarcinoma
C. Squamous carcinoma
D. Neuroendocrine carcinoma

back 65

A. Adenosquamous carcinoma

front 66

Which category tends to progress faster and worse?
A. Keratinizing squamous carcinomas
B. Classic VIN lesions
C. Adenocarcinoma and neuroendocrine
D. Endocervical polyps

back 66

C. Adenocarcinoma and neuroendocrine

front 67

Advanced cervical carcinoma spreads mainly by:
A. Hematogenous dissemination
B. Direct extension
C. Transcoelomic seeding
D. Perineural invasion

back 67

B. Direct extension

front 68

Cervical cancer confined to cervix is stage:
A. Stage II
B. Stage III
C. Stage I
D. Stage IV

back 68

C. Stage I

front 69

Carcinoma in situ (CIN III/HSIL) is stage:
A. Stage 0
B. Stage I
C. Stage II
D. Stage III

back 69

A. Stage 0

front 70

Beyond cervix, not pelvic wall; vagina not lower third:
A. Stage III
B. Stage II
C. Stage IV
D. Stage I

back 70

B. Stage II

front 71

Pelvic wall involvement and lower third vagina:
A. Stage I
B. Stage II
C. Stage IV
D. Stage III

back 71

D. Stage III

front 72

Beyond true pelvis or bladder/rectum mucosa:
A. Stage IV
B. Stage III
C. Stage II
D. Stage I

back 72

A. Stage IV

front 73

Rectal exam shows no tumor-free space. Stage?
A. Stage II
B. Stage IV
C. Stage III
D. Stage I

back 73

C. Stage III

front 74

Hydronephrosis in cervical cancer suggests extension to:
A. Paracervical soft tissue
B. Ureters
C. Vagina
D. Rectum

back 74

B. Ureters

front 75

HPV vaccination is routinely recommended for:
A. Girls only
B. Boys only
C. Pregnant patients only
D. Girls and boys

back 75

D. Girls and boys

front 76

Anovulatory cycles cause endometrium exposure to:
A. Excess progesterone
B. Excess androgens
C. Unopposed estrogens
D. Unopposed inhibin

back 76

C. Unopposed estrogens

front 77

Anovulatory endometrium typically lacks:
A. Glandular secretory changes
B. Squamous metaplasia
C. Koilocytosis
D. Viral inclusions

back 77

A. Glandular secretory changes

front 78

Another progesterone-dependent feature absent in anovulation:
A. Increased mitoses only
B. Basal vacuolization only
C. Keratin pearl formation
D. Stromal predecidualization

back 78

D. Stromal predecidualization

front 79

Progesterone is absent in anovulation because:
A. Placenta fails to form
B. No corpus luteum forms
C. Theca cells stop aromatase
D. Pituitary secretes excess prolactin

back 79

B. No corpus luteum forms

front 80

Postpartum fever with uterine tenderness most suggests:
A. Chronic endometritis
B. Endometriosis
C. Cervical ectropion
D. Acute endometritis

back 80

D. Acute endometritis

front 81

Acute endometritis is most linked to infections after:

A. Ovulation
B. Delivery or miscarriage
C. Menopause
D. HPV vaccination

back 81

B. Delivery or miscarriage

front 82

Endometriosis is best defined as:
A. Ectopic endometrial tissue outside uterus
B. Endometrial atrophy in uterus
C. Tubal squamous metaplasia
D. Cervical gland hyperplasia

back 82

A. Ectopic endometrial tissue outside uterus

front 83

Most common site for endometriosis is:
A. Myometrium
B. Cervix
C. Ovaries
D. Liver capsule

back 83

C. Ovaries

front 84

A common endometriosis location is the:
A. Fallopian fimbriae
B. Rectovaginal septum
C. Urinary bladder mucosa
D. Ovarian medulla

back 84

B. Rectovaginal septum

front 85

In HPV-related SIL, Ki-67 staining often extends into:
A. Basal layer
B. Stromal fibroblasts
C. Glandular lumen
D. Upper epithelial layers

back 85

D. Upper epithelial layers

front 86

Strong p16 staining most supports:
A. Candida infection
B. HSV infection
C. High-risk HPV infection
D. Trichomonas infection

back 86

C. High-risk HPV infection

front 87

Roughly what percent of cervical cancers are SCC?
A. About 80%
B. About 15%
C. About 5%
D. About 40%

back 87

A. About 80%

front 88

Endometriotic stromal cells generate excess estrogen due to increased:
A. 5α-reductase activity
B. Sulfatase activity
C. Aromatase expression
D. COMT activity

back 88

C. Aromatase expression

front 89

Endometriosis has been reported in men treated for prostate cancer with:
A. High-dose estrogens
B. High-dose androgens
C. Radiation alone
D. GnRH agonists only

back 89

A. High-dose estrogens

front 90

A medication class beneficial in endometriosis targets which enzyme?
A. COX-1
B. 5α-reductase
C. Desmolase
D. Aromatase

back 90

D. Aromatase

front 91

Which hormone most directly enhances persistence of endometriotic tissue?
A. Progesterone
B. Estrogen
C. Inhibin
D. Prolactin

back 91

B. Estrogen

front 92

A woman with endometriosis has higher risk for certain ovarian cancers. The underlying condition is:
A. Endometriosis
B. Adenomyosis
C. Endometritis
D. PCOS

back 92

A. Endometriosis

front 93

Likely precursor to endometriosis-related ovarian carcinoma:
A. Adenomyosis
B. Endometrial polyp
C. Atypical endometriosis
D. Non-atypical hyperplasia

back 93

C. Atypical endometriosis

front 94

Adenomyosis is defined as endometrial tissue within the:
A. Serosa
B. Myometrium
C. Endocervix
D. Vagina

back 94

B. Myometrium

front 95

Microscopy shows irregular stromal nests ± glands within uterine wall. Diagnosis?
A. Endometrial polyp
B. Endometrial hyperplasia
C. Endometriosis
D. Adenomyosis

back 95

D. Adenomyosis

front 96

Endometrial polyps can come from using:
A. Letrozole
B. Leuprolide
C. Tamoxifen
D. Clomiphene

back 96

C. Tamoxifen

front 97

Tamoxifen’s tissue-selective action is best described as:
A. Agonist breast, antagonist endometrium
B. Antagonist breast, agonist endometrium
C. Antagonist breast, antagonist endometrium
D. Agonist breast, agonist endometrium

back 97

B. Antagonist breast, agonist endometrium

front 98

A common cause of abnormal uterine bleeding and frequent precursor to carcinoma:
A. Adenomyosis
B. Endometriosis
C. Cervicitis
D. Endometrial hyperplasia

back 98

D. Endometrial hyperplasia

front 99

Endometrial hyperplasia is most strongly linked to:
A. Prolonged estrogenic stimulation
B. Chronic progesterone exposure
C. High prolactin states
D. Acute bacterial infection

back 99

A. Prolonged estrogenic stimulation

front 100

The estrogen source driving hyperplasia may be:
A. Only ovarian
B. Endogenous or exogenous
C. Only exogenous
D. Only adrenal

back 100

B. Endogenous or exogenous

front 101

Common genetic alteration in hyperplasia and endometrial carcinoma:
A. APC loss
B. BRCA1 loss
C. RB1 loss
D. PTEN inactivation

back 101

D. PTEN inactivation

front 102

PTEN loss most directly overactivates which pathway?
A. PI3K/AKT pathway
B. JAK/STAT pathway
C. Notch pathway
D. Hedgehog pathway

back 102

A. PI3K/AKT pathway

front 103

Germline PTEN mutations causing high endometrial cancer risk:
A. Lynch syndrome
B. Li-Fraumeni syndrome
C. Cowden syndrome
D. Peutz-Jeghers syndrome

back 103

C. Cowden syndrome

front 104

Cowden syndrome is strongly associated with increased:
A. Colon and gastric cancers
B. Ovarian and pancreatic cancers
C. Liver and lung cancers
D. Breast and endometrial cancers

back 104

D. Breast and endometrial cancers

front 105

Endometrial hyperplasia is classified as:
A. Non-atypical or atypical
B. Serous or mucinous
C. Diffuse or nodular
D. Simple or cystic

back 105

A. Non-atypical or atypical

front 106

Atypical endometrial hyperplasia is also called:
A. VIN
B. VAIN
C. Endometrial intraepithelial neoplasia
D. Adenocarcinoma in situ

back 106

C. Endometrial intraepithelial neoplasia

front 107

Cardinal feature of non-atypical hyperplasia:
A. Stromal invasion
B. Increased gland-to-stroma ratio
C. Koilocytosis
D. Caseating granulomas

back 107

B. Increased gland-to-stroma ratio

front 108

Atypical hyperplasia is best described as:
A. Complex glands with nuclear atypia
B. Simple glands without atypia
C. Pure stromal overgrowth
D. Surface ulceration only

back 108

A. Complex glands with nuclear atypia

front 109

Most common type of endometrial carcinoma:
A. Type II carcinoma
B. Clear cell carcinoma
C. Serous carcinoma
D. Type I carcinoma

back 109

D. Type I carcinoma

front 110

Enzyme high in endometriotic stroma but absent in normal endometrial stroma:
A. 5α-reductase
B. Aromatase
C. DNMT1
D. Myeloperoxidase

back 110

B. Aromatase

front 111

Endometriosis increases risk of which ovarian cancer subtypes?
A. Serous and mucinous
B. Dysgerminoma and yolk sac
C. Endometrioid and clear cell
D. Granulosa and thecoma

back 111

C. Endometrioid and clear cell

front 112

Estrogen’s main effect in endometriosis is to:
A. Induce rapid tissue necrosis
B. Enhance tissue survival
C. Block aromatase transcription
D. Prevent stromal proliferation

back 112

B. Enhance tissue survival

front 113

A uterine wall lesion containing endometrial stroma ± glands is located in the:
A. Endometrium
B. Cervical stroma
C. Myometrium
D. Vaginal submucosa

back 113

C. Myometrium

front 114

Tamoxifen-associated endometrial polyps best reflect tamoxifen acting as:
A. Weak endometrial estrogen agonist
B. Pure endometrial estrogen antagonist
C. Pure progesterone agonist
D. Aromatase inhibitor

back 114

A. Weak endometrial estrogen agonist

front 115

Complex gland crowding with nuclear atypia is:
A. Atypical hyperplasia
B. Non-atypical hyperplasia
C. Endometrial polyp
D. Adenomyosis

back 115

A. Atypical hyperplasia

front 116

Type I endometrial carcinomas are also called:
A. Serous carcinomas
B. Clear cell carcinomas
C. Endometrioid carcinomas
D. Mixed Müllerian tumors

back 116

C. Endometrioid carcinomas

front 117

Type I endometrioid carcinoma typically arises in the setting of:
A. Endometrial atrophy
B. Endometrial hyperplasia
C. Cervical dysplasia
D. Myometrial fibrosis

back 117

B. Endometrial hyperplasia

front 118

Type I tumors share risk factors with hyperplasia, including:
A. Obesity and diabetes
B. Smoking and HPV
C. Early menopause only
D. Hyperprolactinemia

back 118

A. Obesity and diabetes

front 119

Atypical hyperplasia and endometrial carcinoma commonly share mutations in:
A. TP53
B. PTEN
C. RB1
D. APC

back 119

B. PTEN

front 120

This supports atypical hyperplasia as a:
A. Late metastasis marker
B. Precursor to carcinoma
C. Non-neoplastic change
D. Treatment complication

back 120

B. Precursor to carcinoma

front 121

Common mutations in type I endometrioid carcinomas increase signaling through:
A. MAPK/ERK
B. JAK/STAT
C. PI3K/AKT
D. Notch

back 121

C. PI3K/AKT

front 122

PI3K/AKT signaling in endometrial cells tends to augment:
A. Androgen receptor targets
B. Estrogen receptor targets
C. Progesterone receptor targets
D. p53-dependent targets

back 122

B. Estrogen receptor targets

front 123

Endometrioid carcinoma gross pattern can be:
A. Only diffuse infiltrative
B. Only polypoid
C. Ulcerative
D. Local polypoid or diffuse

back 123

D. Local polypoid or diffuse

front 124

Typical spread for endometrioid carcinoma occurs via:
A. Lymphatics invasion then extension
B. Hematogenous invasion then extension
C. Myometrial invasion then extension
D. Transcoelomic invasion then extension

back 124

C. Myometrial invasion then extension

front 125

Endometrioid adenocarcinomas are characterized by glands resembling:
A. Tubal epithelium
B. Normal endometrial epithelium
C. Squamous epithelium
D. Cervical mucus glands

back 125

B. Normal endometrial epithelium

front 126

Type II endometrial carcinomas most often arise in:
A. Hyperplasia
B. Endometrial atrophy
C. Pregnancy
D. Endometritis

back 126

B. Endometrial atrophy

front 127

Type II (serous) carcinomas are by definition:
A. Well differentiated
B. Poorly differentiated
C. Low grade
D. Benign

back 127

B. Poorly differentiated

front 128

Most common subtype of type II endometrial carcinoma:
A. Endometrioid
B. Mucinous
C. Serous carcinoma
D. Adenosquamous

back 128

C. Serous carcinoma

front 129

Tumor suppressor mutated in ≥90% of serous carcinomas:
A. PTEN
B. BRCA1
C. TP53
D. MLH1

back 129

C. TP53

front 130

Precursor lesion of serous endometrial carcinoma:
A. EIN
B. Endometrial intraepithelial carcinoma
C. CIN III
D. VAIN

back 130

B. Endometrial intraepithelial carcinoma

front 131

Endometrial intraepithelial carcinoma consists of:
A. Cells identical to serous carcinoma
B. Benign glands only
C. Stromal invasion present
D. Squamous metaplasia only

back 131

A. Cells identical to serous carcinoma

front 132

Serous carcinomas often arise in:
A. Enlarged gravid uteri
B. Small atrophic uteri
C. Hypertrophic uteri
D. Adolescent uteri

back 132

B. Small atrophic uteri

front 133

Serous carcinomas are often:
A. Tiny and superficial
B. Bulky or deeply invasive
C. Always polypoid only
D. Always mucinous

back 133

B. Bulky or deeply invasive

front 134

Incidence of endometrial carcinoma peaks in:
A. Teen years
B. 20–30
C. 35–45
D. Postmenopausal 55–65

back 134

D. Postmenopausal 55–65

front 135

Serous carcinoma occurs more frequently in women of:
A. Asian descent
B. African American descent
C. Native American descent
D. Hispanic descent

back 135

B. African American descent

front 136

Serous carcinoma contributes to mortality in African American women being:
A. 2-fold higher
B. 10-fold higher
C. Equal to Caucasian women
D. Lower than Caucasian women

back 136

A. 2-fold higher

front 137

Typical presenting symptom aiding early detection for Serous carcinoma:
A. Purulent cervical discharge
B. Postmenopausal vaginal bleeding
C. Cyclic pelvic pain only
D. Urinary retention

back 137

B. Postmenopausal vaginal bleeding

front 138

For Serous carcinoma, Postmenopausal bleeding may occur with:
A. Excess leukorrhea
B. Frothy green discharge
C. Curdy discharge
D. Vesicular lesions

back 138

A. Excess leukorrhea

front 139

Malignant mixed Müllerian tumors are typically:
A. Small and cystic
B. Bulky/polypoid
C. Flat plaques
D. Papillary fronds only

back 139

B. Bulky/polypoid

front 140

Histology of malignant mixed Müllerian tumor shows:
A. Pure adenocarcinoma only
B. Adenocarcinoma + malignant mesenchyme
C. Pure sarcoma only
D. Pure squamous nests

back 140

B. Adenocarcinoma + malignant mesenchyme

front 141

Malignant mixed Müllerian tumors most often occur in:
A. Premenopausal teens
B. Postmenopausal women
C. Pregnant women
D. Men

back 141

B. Postmenopausal women

front 142

Typical presentation of malignant mixed Müllerian tumors:
A. Vaginal bleeding
B. Painless vulvar papules
C. Amenorrhea only
D. Galactorrhea

back 142

A. Vaginal bleeding

front 143

Diagnosis of adenosarcoma requires:
A. Malignant glands, benign stroma
B. Malignant stroma, benign abnormal glands
C. Benign glands, benign stroma
D. Malignant glands, malignant stroma

back 143

B. Malignant stroma, benign abnormal glands

front 144

Adenosarcomas are commonly seen in:
A. 4th–5th decade
B. 1st–2nd decade
C. 7th–8th decade
D. Childhood only

back 144

A. 4th–5th decade

front 145

Adenosarcomas are generally:
A. High grade aggressive
B. Low grade malignancy
C. Always metastatic
D. Always benign

back 145

B. Low grade malignancy

front 146

Type I endometrioid tumors are associated with unopposed:
A. Estrogen stimulation
B. Progesterone stimulation
C. Inhibin stimulation
D. Oxytocin stimulation

back 146

A. Estrogen stimulation

front 147

Oophorectomy benefits endometrial stromal adenosarcoma because of:
A. Progesterone replacement effect
B. HPV eradication mechanism
C. Estrogen withdrawal effect
D. Iron chelation effect

back 147

C. Estrogen withdrawal effect

front 148

Low-grade endometrial stromal sarcoma commonly shows:
A. JAZF1–SUZ12 fusion
B. PTEN–TP53 fusion
C. MED12–RB1 fusion
D. KRAS–APC fusion

back 148

A. JAZF1–SUZ12 fusion

front 149

JAZF1 most directly encodes a:
A. Histone acetyltransferase
B. Cell-surface receptor
C. Spindle checkpoint kinase
D. Transcriptional repressor

back 149

D. Transcriptional repressor

front 150

SUZ12 is best linked to:
A. Microtubule polymerization
B. Repressive histone marks
C. Steroid hormone cleavage
D. Viral capsid assembly

back 150

B. Repressive histone marks

front 151

MED12 mutations occur in ~70% of uterine:
A. Endometrial polyps
B. Leiomyomas
C. Granulosa tumors
D. Stromal sarcomas

back 151

B. Leiomyomas

front 152

MED12 mutations are virtually unique to:
A. Müllerian epithelial tumors
B. Germ cell tumors
C. Sex cord tumors
D. Uterine smooth muscle tumors

back 152

D. Uterine smooth muscle tumors

front 153

MED12 mutations are seen in:
A. Leiomyomas and leiomyosarcomas
B. Adenomatoid tumors only
C. Paratubal cysts only
D. Serous carcinomas only

back 153

A. Leiomyomas and leiomyosarcomas

front 154

A uterine leiomyosarcoma most often metastasizes by:
A. Perineural spread
B. Transcoelomic seeding
C. Hematogenous spread
D. Direct extension only

back 154

C. Hematogenous spread

front 155

Most typical distant metastasis site for leiomyosarcoma:
A. Thyroid
B. Lungs
C. Spleen
D. Pancreas

back 155

B. Lungs

front 156

Distant spread pattern most consistent with leiomyosarcoma:
A. Omentum, peritoneum, ovaries
B. Pelvic nodes, inguinal nodes
C. Skin, liver, adrenal
D. Lung, bone, brain

back 156

D. Lung, bone, brain

front 157

Regurgitation theory of endometriosis proposes ectopic implants via:
A. Direct cervical invasion
B. Sexual transmission
C. Retrograde menstrual flow
D. Hematogenous emboli only

back 157

C. Retrograde menstrual flow

front 158

“Benign metastases” theory proposes endometriosis spreads via:
A. Blood and lymphatics
B. Retrograde flow only
C. Surface inoculation only
D. Ovulation-related rupture

back 158

A. Blood and lymphatics

front 159

Most common primary fallopian tube lesion:
A. Serous carcinoma
B. Salpingitis nodosa
C. Endometriosis plaque
D. Paratubal cysts

back 159

D. Paratubal cysts

front 160

Paratubal cysts are typically:
A. Solid nodules, hemorrhagic
B. Translucent cysts, clear fluid
C. Papillary masses, mucin-filled
D. Ulcerated plaques, crusted

back 160

B. Translucent cysts, clear fluid

front 161

Benign fallopian tube tumor is usually:
A. Adenomatoid tumor
B. Dysgerminoma
C. Brenner tumor
D. Choriocarcinoma

back 161

A. Adenomatoid tumor

front 162

Tubal adenomatoid tumors often occur:
A. Intramucosal only
B. Endometrial stroma only
C. Subserosal or mesosalpinx
D. Cervical transformation zone

back 162

C. Subserosal or mesosalpinx

front 163

Tubal adenomatoid tumor counterpart occurs in:
A. Endocervix
B. Breast ducts
C. Bartholin gland
D. Testis or epididymis

back 163

D. Testis or epididymis

front 164

PCOS is best defined by:
A. Hyperandrogenism with chronic anovulation
B. Hypoandrogenism with ovulation
C. Progesterone excess only
D. Estrogen deficiency only

back 164

A. Hyperandrogenism with chronic anovulation

front 165

PCOS reflects dysregulation of enzymes in:
A. Collagen synthesis
B. Androgen biosynthesis
C. Heme synthesis
D. Bile acid synthesis

back 165

B. Androgen biosynthesis

front 166

PCOS increases endometrial risk via increased free:
A. Progesterone
B. Testosterone
C. Estrone
D. Inhibin

back 166

C. Estrone

front 167

In PCOS, increased free estrone raises risk of:
A. Cervical dysplasia
B. Ovarian torsion
C. Vaginal SCC
D. Endometrial hyperplasia/carcinoma

back 167

D. Endometrial hyperplasia/carcinoma

front 168

Stromal hyperthecosis is seen most often in:
A. Adolescents
B. Postmenopausal women
C. Pregnancy
D. Prepubertal girls

back 168

B. Postmenopausal women

front 169

Stromal hyperthecosis classically shows:
A. Bilateral uniform ovarian enlargement
B. Unilateral ovarian atrophy
C. Small ovaries with fibrosis
D. Calcified cortical plaques

back 169

A. Bilateral uniform ovarian enlargement

front 170

Microscopy in stromal hyperthecosis shows:
A. Koilocytosis with halos
B. Caseating granulomas
C. Hypercellular stroma, luteinization
D. Glands invading myometrium

back 170

C. Hypercellular stroma, luteinization

front 171

Virilization in stromal hyperthecosis is:
A. Less than PCOS
B. More striking than PCOS
C. Absent versus PCOS
D. Identical to PCOS

back 171

B. More striking than PCOS

front 172

Cystic ovarian follicles can arise from:
A. Luteal cyst rupture
B. Teratoma degeneration
C. Tubal epithelial rests
D. Unruptured Graafian follicles

back 172

D. Unruptured Graafian follicles

front 173

Cystic follicles can also form when follicles:
A. Rupture then immediately seal
B. Never reach antral stage
C. Implant in myometrium
D. Become malignant rapidly

back 173

A. Rupture then immediately seal

front 174

Most primary ovarian neoplasms derive from:
A. Germ cell lineage
B. Müllerian epithelium
C. Smooth muscle lineage
D. Neural crest lineage

back 174

B. Müllerian epithelium

front 175

Benign ovarian tumor with cystic areas:
A. Adenofibroma
B. Cystadenofibroma
C. Cystadenoma
D. Borderline serous tumor

back 175

C. Cystadenoma

front 176

Benign ovarian tumor with mainly fibrous areas:
A. Adenofibroma
B. Cystadenoma
C. Mature teratoma
D. Fibrosarcoma

back 176

A. Adenofibroma

front 177

Benign ovarian tumor with cystic and fibrous areas:
A. Cystadenoma
B. Adenofibroma
C. Dysgerminoma
D. Cystadenofibroma

back 177

D. Cystadenofibroma

front 178

Stromal hyperthecosis is also called:
A. Endosalpingiosis
B. Adenomyosis
C. Cortical stromal hyperplasia
D. Endometrial atrophy

back 178

C. Cortical stromal hyperplasia

front 179

An ovarian tumor described as borderline/malignant with a cystic component is:
A. Adenofibroma
B. Cystadenocarcinoma
C. Cystadenoma
D. Fibroma

back 179

B. Cystadenocarcinoma

front 180

Benign ovarian tumors are more common in:
A. Women age 20–45
B. Women age 45–65
C. Postmenopausal women only
D. Prepubertal girls only

back 180

A. Women age 20–45

front 181

Malignant ovarian tumors are more common in:
A. Women age 20–45
B. Adolescents
C. Women age 45–65
D. Children

back 181

C. Women age 45–65

front 182

Type I ovarian carcinomas are typically:
A. Low-grade tumors
B. High-grade serous tumors
C. Always mucinous tumors
D. Always germ cell tumors

back 182

A. Low-grade tumors

front 183

Type I ovarian carcinomas often arise with:
A. Endometriosis or borderline tumors
B. STIC lesions only
C. HPV-associated lesions
D. Leiomyomas

back 183

A. Endometriosis or borderline tumors

front 184

Type II ovarian carcinomas are best described as:
A. Low-grade endometrioid tumors
B. High-grade serous carcinomas
C. Benign cystic neoplasms
D. Borderline mucinous tumors

back 184

B. High-grade serous carcinomas

front 185

Type II ovarian carcinomas arise from:
A. Endometriosis implants
B. Serous borderline tumors
C. Serous intraepithelial carcinoma
D. Granulosa cell tumors

back 185

C. Serous intraepithelial carcinoma

front 186

Most common malignant ovarian tumor type:
A. Serous tumors
B. Mucinous tumors
C. Clear cell tumors
D. Brenner tumors

back 186

A. Serous tumors

front 187

Serous tumors are typically:
A. Solid-only neoplasms
B. Cystic neoplasms
C. Purely stromal tumors
D. Always bilateral fibromas

back 187

B. Cystic neoplasms

front 188

Germline mutations increasing ovarian cancer risk include:
A. PTEN and TP53
B. KRAS and BRAF
C. MLH1 and MSH2
D. BRCA1 and BRCA2

back 188

D. BRCA1 and BRCA2

front 189

Low-grade serous carcinomas often arise with:
A. Serous borderline tumors
B. STIC lesions
C. Endometriosis only
D. Vaginal SCC

back 189

A. Serous borderline tumors

front 190

High-grade serous carcinomas often arise from:
A. Serous borderline tumors
B. In situ lesions in fimbriae
C. Ovarian fibromas
D. Cervical HSIL

back 190

B. In situ lesions in fimbriae

front 191

Serous tubal intraepithelial carcinoma (STIC) is associated with sporadic:
A. Low-grade mucinous cancers
B. High-grade serous ovarian cancers
C. Endometrioid hyperplasia
D. Leiomyosarcoma

back 191

B. High-grade serous ovarian cancers

front 192

Women with BRCA mutation and strong family history may undergo:
A. Prophylactic hysterectomy only
B. Prophylactic salpingo-oophorectomy
C. Cervical conization
D. Endometrial ablation

back 192

B. Prophylactic salpingo-oophorectomy

front 193

High-grade serous tumors commonly show mutations in:
A. KRAS
B. BRAF
C. TP53
D. ERBB2

back 193

C. TP53

front 194

Low-grade serous tumors more often show mutations in:
A. KRAS/BRAF/ERBB2
B. TP53
C. PTEN
D. APC

back 194

KRAS/BRAF/ERBB2

front 195

STIC lesions are identical to high-grade serous carcinoma except they lack:
A. Necrosis
B. Papillary architecture
C. Pleomorphism
D. Invasion

back 195

D. Invasion

front 196

Mucinous tumors occur most frequently in:
A. Childhood
B. Middle adult life
C. After menopause
D. Before puberty

back 196

B. Middle adult life

front 197

Mucinous tumors rarely occur:
A. In middle adult life
B. In adolescence only
C. Before puberty or after menopause
D. In reproductive years

back 197

C. Before puberty or after menopause

front 198

Mucinous tumors are:
A. Benign only
B. Borderline mostly
C. Benign mostly
D. Borderline only

back 198

C. Benign mostly

front 199

A large unilateral ovarian mass shows mucinous epithelium. Which mutation is most consistent?
A. TP53 mutation
B. KRAS mutation
C. FOXL2 mutation
D. PTEN mutation

back 199

A. TP53 mutation

front 200

Which feature best fits mucinous ovarian tumors?
A. Surface commonly involved
B. Usually bilateral disease
C. Diffuse peritoneal implants
D. Surface rarely involved

back 200

D. Surface rarely involved

front 201

Histology shows tubular glands resembling endometrium. Tumor type?
A. Endometrioid ovarian tumor
B. Serous cystadenocarcinoma
C. Mucinous cystadenoma
D. Dysgerminoma

back 201

A. Endometrioid ovarian tumor

front 202

Endometrioid ovarian carcinomas may coexist with:
A. PCOS
B. Salpingitis
C. Endometriosis
D. Leiomyomas

back 202

C. Endometriosis

front 203

Endometrioid carcinoma + endometriosis often share mutations affecting:
A. Hedgehog and Wnt
B. PI3K/AKT and mismatch repair
C. JAK/STAT and p53
D. EGFR and ALK

back 203

B. PI3K/AKT and mismatch repair

front 204

Endometrioid ovarian carcinomas are usually:
A. High-grade tumors
B. Borderline only
C. Always metastatic
D. Low-grade tumors

back 204

D. Low-grade tumors

front 205

Large epithelial cells with clear cytoplasm suggest:
A. Serous carcinoma
B. Mucinous carcinoma
C. Clear cell carcinoma
D. Transitional cell tumor

back 205

C. Clear cell carcinoma

front 206

Transitional cell tumors of the ovary are usually:
A. Benign
B. Highly malignant
C. Always bilateral
D. Always functional

back 206

A. Benign

front 207

Ovarian carcinoma seeds peritoneum via capsule. Expected finding?
A. Hyperandrogenism
B. Chylous pleural effusion
C. Pelvic inflammatory disease
D. Massive ascites

back 207

D. Massive ascites

front 208

Most ovarian carcinomas present with:
A. Cyclic bleeding only
B. Lower abdominal pain, enlargement
C. Postcoital spotting only
D. Acute fever and discharge

back 208

B. Lower abdominal pain, enlargement

front 209

Benign ovarian teratomas are commonly called:
A. Dermoid cysts
B. Serous cysts
C. Brenner tumors
D. Krukenberg tumors

back 209

A. Dermoid cysts

front 210

Mature (benign) teratoma is occasionally linked to:
A. Lambert-Eaton syndrome
B. Hashimoto encephalopathy
C. Inflammatory limbic encephalitis
D. Guillain-Barré syndrome

back 210

C. Inflammatory limbic encephalitis

front 211

A teratoma causes flushing and wheeze. Most likely syndrome?
A. Cushing syndrome
B. Carcinoid syndrome
C. Turner syndrome
D. Conn syndrome

back 211

B. Carcinoid syndrome

front 212

An 18-year-old has malignant ovarian teratoma. Type?
A. Immature teratoma
B. Mature teratoma
C. Struma ovarii
D. Dermoid cyst

back 212

A. Immature teratoma

front 213

Most dysgerminomas are:
A. Bilateral tumors
B. Multifocal tumors
C. Capsular-seeding tumors
D. Unilateral tumors

back 213

D. Unilateral tumors

front 214

Rapidly growing pelvic mass in a child suggests:
A. Brenner tumor
B. Thecoma
C. Yolk sac tumor
D. Endometrioma

back 214

C. Yolk sac tumor

front 215

Ovarian choriocarcinoma (nongestational) is typically:
A. Chemo-sensitive, favorable outcome
B. Chemo-resistant, often fatal
C. Slow-growing, indolent course
D. Benign, hormonally silent

back 215

B. Chemo-resistant, often fatal

front 216

Granulosa cell tumors are usually:
A. Benign, potentially malignant
B. Bilateral, potentially malignant
C. Nonfunctional, potentially malignant
D. Unilateral, potentially malignant

back 216

D. Unilateral, potentially malignant

front 217

FOXL2 mutations are common in:
A. Adult granulosa tumors
B. Yolk sac tumors
C. Mucinous carcinomas
D. Dysgerminomas

back 217

A. Adult granulosa tumors

front 218

Tumors composed predominantly of theca cells are:
A. Usually malignant
B. Usually borderline
C. Almost always benign
D. Always metastatic

back 218

C. Almost always benign

front 219

Plump spindle stromal cells with lipid droplets indicates:
A. Fibroma
B. Thecoma
C. Dysgerminoma
D. Brenner tumor

back 219

B. Thecoma

front 220

Most fibromas, fibrothecomas, and thecomas are:
A. Benign
B. Highly malignant
C. Always bilateral
D. Often metastatic

back 220

A. Benign

front 221

Over half of Sertoli-Leydig tumors show mutation in:
A. KRAS
B. TP53
C. FOXL2
D. DICER1

back 221

D. DICER1

front 222

DICER1 mutations primarily disrupt:
A. DNA mismatch repair
B. Steroid receptor binding
C. microRNA regulation
D. Collagen cross-linking

back 222

C. microRNA regulation

front 223

A pregnancy-associated ovarian mass mimics corpus luteum. Diagnosis?
A. Pregnancy luteoma
B. Krukenberg tumor
C. STIC lesion
D. Endometrioma

back 223

A. Pregnancy luteoma

front 224

Pregnancy luteoma may cause:
A. Maternal hypocalcemia
B. Virilization in female infants
C. Severe hyperprolactinemia
D. Autoimmune oophoritis

back 224

B. Virilization in female infants

front 225

Metastatic GI carcinoma to ovaries is termed:
A. Brenner tumor
B. Dermoid cyst
C. Krukenberg tumor
D. Thecoma

back 225

C. Krukenberg tumor

front 226

Krukenberg tumor is classically:
A. Unilateral, serous papillary
B. Pure squamous morphology
C. Clear-cell, endometrial-type
D. Bilateral mucin signet-ring cells

back 226

D. Bilateral mucin signet-ring cells

front 227

In mucinous ovarian tumors, laterality is most often:
A. Unilateral
B. Bilateral
C. Diffusely multifocal
D. Always midline

back 227

A. Unilateral

front 228

Clear cell ovarian carcinoma most resembles:
A. Secretory-phase normal endometrium
B. Hypersecretory gestation endometrium
C. Atrophic endometrium
D. Proliferative-phase endometrium

back 228

B. Hypersecretory gestation endometrium