Print Options

Card layout: ?

← Back to notecard set|Easy Notecards home page

Instructions for Side by Side Printing
  1. Print the notecards
  2. Fold each page in half along the solid vertical line
  3. Cut out the notecards by cutting along each horizontal dotted line
  4. Optional: Glue, tape or staple the ends of each notecard together
  1. Verify Front of pages is selected for Viewing and print the front of the notecards
  2. Select Back of pages for Viewing and print the back of the notecards
    NOTE: Since the back of the pages are printed in reverse order (last page is printed first), keep the pages in the same order as they were after Step 1. Also, be sure to feed the pages in the same direction as you did in Step 1.
  3. Cut out the notecards by cutting along each horizontal and vertical dotted line
To print: Ctrl+PPrint as a list

154 notecards = 39 pages (4 cards per page)

Viewing:

Central Science: Chapter 5

front 1

Objects can possess energy as ________.

(a) endothermic energy
(b) potential energy
(c) kinetic energy

A) a only
B) b only
C) c only
D) a and c
E) b and c

back 1

E

front 2

The internal energy of a system is always increased by ________.
A) adding heat to the system
B) having the system do work on the surroundings
C) withdrawing heat from the system
D) adding heat to the system and having the system do work on the surroundings
E) a volume decompression

back 2

A

front 3

The internal energy of a system ________.
A) is the sum of the kinetic energy of all of its components
B) is the sum of the rotational, vibrational, and translational energies of all of its components
C) refers only to the energies of the nuclei of the atoms of the component molecules
D) is the sum of the potential and kinetic energies of the components
E) none of the above

back 3

D

front 4

Which one of the following conditions would always result in an increase in the internal energy of a system?
A) The system loses heat and does work on the surroundings.
B) The system gains heat and does work on the surroundings.
C) The system loses heat and has work done on it by the surroundings.
D) The system gains heat and has work done on it by the surroundings.
E) None of the above is correct.

back 4

D

front 5

When a system ________, ΔE is always negative.
A) absorbs heat and does work
B) gives off heat and does work
C) absorbs heat and has work done on it
D) gives off heat and has work done on it
E) None of the above is always negative.

back 5

B

front 6

Which one of the following is an endothermic process?
A) ice melting
B) water freezing
C) boiling soup
D) Hydrochloric acid and barium hydroxide are mixed at 25 °C: the temperature increases.
E) Both A and C

back 6

E

front 7

Which one of the following is an exothermic process?
A) ice melting
B) water evaporating
C) boiling soup
D) condensation of water vapor
E) Ammonium thiocyanate and barium hydroxide are mixed at 25 °C: the temperature drops.

back 7

D

front 8

Of the following, which one is a state function?
A) H
B) q
C) w
D) heat
E) none of the above

back 8

A

front 9

Which of the following is a statement of the first law of thermodynamics?
A) Ek = 1/2mv2
B) A negative ΔH corresponds to an exothermic process.
C) ΔE = Efinal - Einitial
D) Energy lost by the system must be gained by the surroundings.
E) 1 cal = 4.184 J (exactly)

back 9

D

front 10

The internal energy can be increased by ________.

(a) transferring heat from the surroundings to the system
(b) transferring heat from the system to the surroundings
(c) doing work on the system

A) a only
B) b only
C) c only
D) a and c
E) b and c

back 10

D

front 11

A ________ ΔH corresponds to an ________ process.
A) negative, endothermic
B) negative, exothermic
C) positive, exothermic
D) zero, exothermic
E) zero, endothermic

back 11

B

front 12

A ________ ΔH corresponds to an ________ process.
A) negative, endothermic
B) positive, exothermic
C) positive, endothermic
D) zero, exothermic
E) zero, endothermic

back 12

C

front 13

ΔH for an endothermic process is ________ while ΔH for an exothermic process is ________.
A) zero, positive
B) zero, negative
C) positive, zero
D) negative, positive
E) positive, negative

back 13

E

front 14

For a given process at constant pressure, w is positive. This means that the process involves ________.
A) work being done by the system on the surroundings
B) work being done by the surroundings on the system
C) no work being done
D) an equal amount of work done on the system and by the system
E) work being done against a vacuum

back 14

A

front 15

Which one of the following statements is true?
A) Enthalpy is an intensive property.
B) The enthalpy change for a reaction is independent of the state of the reactants and products.
C) Enthalpy is a state function.
D) H is the value of q measured under conditions of constant volume.
E) The enthalpy change of a reaction is the reciprocal of the ΔH of the reverse reaction.

back 15

C

front 16

All of the following statements are true except ________.
A) Internal energy is a state function.
B) The enthalpy change for a reaction is equal in magnitude, but opposite in sign, to the enthalpy change for the reverse reaction.
C) The enthalpy change for a reaction depends on the state of the reactants and products.
D) The enthalpy of a reaction is equal to the heat of the reaction.
E) Enthalpy is an intensive property.

back 16

E

front 17

A chemical reaction that absorbs heat from the surroundings is said to be ________ and has a ________ ΔH at constant pressure.
A) endothermic, positive
B) endothermic, negative
C) exothermic, negative
D) exothermic, positive
E) exothermic, neutral

back 17

A

front 18

A chemical reaction that releases heat to the surroundings is said to be ________ and has a ________ ΔH at constant pressure.
A) endothermic, positive
B) endothermic, negative
C) exothermic, negative
D) exothermic, positive
E) exothermic, neutral

back 18

C

front 19

The reaction

4Al (s) + 3O2 (g) → 2 Al2O3 (s) ΔH° = -3351 kJ
is ________, and therefore heat is ________ by the reaction.
A) endothermic, released
B) endothermic, absorbed
C) exothermic, released
D) exothermic, absorbed
E) thermoneutral, neither released nor absorbed

back 19

C

front 20

When ________ is constant, the enthalpy change of a process equal to the amount of heat transferred into or out of the system?
A) temperature
B) volume
C) pressure and volume
D) temperature and volume
E) pressure

back 20

E

front 21

The units of heat capacity are ________.
A) K/J or °C/J
B) J/K or J/°C
C) J/g-K or J/g-°C
D) J/mol
E) g-K/J or g-°C/J

back 21

B

front 22

The units of specific heat are ________.
A) K/J or °C/J
B) J/K or J/°C
C) J/g-K or J/g-°C
D) J/mol
E) g-K/J or g-°C/J

back 22

C

front 23

The term Btu which stands for ________ is commonly used in engineering applications.
A) Best thermal unit
B) Bunsen thermal unit
C) British thermal unit
D) Bake thermal unit
E) Brush thermal unit

back 23

C

front 24

Which of the following is a statement of Hess's law?
A) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the sum of the enthalpy changes for the individual steps.
B) If a reaction is carried out in a series of steps, the ΔH for the reaction will equal the product of the enthalpy changes for the individual steps.
C) The ΔH for a process in the forward direction is equal in magnitude and opposite in sign to the ΔH for the process in the reverse direction.
D) The ΔH for a process in the forward direction is equal to the ΔH for the process in the reverse direction.
E) The ΔH of a reaction depends on the physical states of the reactants and products.

back 24

A

front 25

For which one of the following reactions is ΔH°rxn equal to the heat of formation of the product?
A) N2 (g) + 3H2 (g) → 2NH3 (g)
B) (1/2)N2 (g) + O2 (g) → NO2(g)
C) 6C (s) + 6H (g) → C6H6 (l)
D) P (g) + 4H (g) + Br (g) → PH4Br (l)
E) 12C (g) + 11H2 (g) + 11O (g) → C6H22O11 (g)

back 25

B

front 26

Of the following, ΔH°f is not zero for ________.
A) O2 (g)
B) C (graphite)
C) N2 (g)
D) F2 (s)
E) Cl2 (g)

back 26

D

front 27

Of the following, ΔH°f is not zero for ________.
A) Sc (g)
B) Si (s)
C) P4 (s, white)
D) Br2 (l)
E) Ca (s)

back 27

A

front 28

Consider the following two reactions:

A → 2B ΔH°rxn = 456.7 kJ/mol
A → C ΔH°rxn = -22.1 kJ/mol

Determine the enthalpy change for the process:

2B → C
A) -478.8 kJ/mol
B) -434.6 kJ/mol
C) 434.6 kJ/mol
D) 478.8 kJ/mol
E) More information is needed to solve the problem.

back 28

A

front 29

In the reaction below, ΔH°f is zero for ________.
Ni (s) + 2CO (g) + 2PF3 (g) → Ni(CO)2(PF3)2 (l)

A) Ni (s)
B) CO (g)
C) PF3 (g)
D) Ni(CO)2(PF3)2 (l)
E) both CO (g) and PF3 (g)

back 29

A

front 30

For the combustion reaction of methane, ΔH°f is zero for ________.
CH4 (g) + O2 (g) → 2H2O(g) + CO2 (g)

A) O2 (g)
B) CH4 (g)
C) CO2 (g)
D) H2O (g)
E) Both O2 (g) and CH4 (g)

back 30

A

front 31

For the following reactions, the ΔH°rxn is NOT equal to ΔH°f for the product except for ________.
A) CH4 (g) + 2Cl2 (g) → CH2Cl2 (l) + 2HCl (g)
B) N2 (g) + O3 (g) → N2O3 (g)
C) Xe (g) + 2F2 (g) → XeF4 (g)
D) 2CO (g) + O2 (g) → 2CO2 (g)
E) C (diamond) + O2 (g) → CO2 (g)

back 31

C

front 32

For the following reactions, the ΔH°rxn is NOT equal to ΔH°f for the product except for ________.
A) 2Ca (s) + O2 (g) → 2CaO (s)
B) 3Mg (s) + N2 (g) → Mg3N2 (s)
C) C2H2 (g) + H2 (g) → H4 (g)
D) 2C (graphite) + O2 (g) → 2CO (g)
E) C (diamond) + O2 (g) → CO2 (g)

back 32

B

front 33

For the following reactions, the ΔH°rxn is NOT equal to ΔH°f for the product except for ________.
A) N2 (g) + O2 (g) → 2NO (g)
B) 2H2 (g) + O2 (g) → 2H2O (l)
C) 2H2 (g) + O2 (g) → 2H2O (g)
D) 2C (s, graphite) + 2H2(g) → C2H4 (g)
E) H2O (l) + 1/2 O2 (g) → H2O2 (l)

back 33

D

front 34

For the following reactions, the ΔH°rxn is NOT equal to ΔH°f for the product except for ________.
A) H2O (l) + 1/2O2 (g) → H2O2 (l)
B) N2 (g) + O2 (g) → 2NO (g)
C) 2H2 (g) + O2 (g) → 2H2O (l)
D) 2H2 (g) + O2 (g) → 2H2O (g)
E) none of the above

back 34

E

front 35

For the following reactions, the ΔH°rxn is NOT equal to ΔH°f for the product except for ________.
A) H2 (g) + 1/2 O2 (g) → H2O (l)
B) H2 (g) + O2 (g) → H2O2 (l)
C) 2C (s, graphite) + 2H2 (g) → C2H4 (g)
D) 1/2 N2 (g) + O2 (g) → NO2 (g)
E) all of the above

back 35

E

front 36

The term standard conditions with respect to enthalpy change means ________.
A) 1 atm and 0 K
B) 1 atm and 1 L
C) 1 atm and 298 K
D) 1 L and 0 K
E) 1 atm and 1 °C

back 36

C

front 37

The energy released by combustion of ________ of a substance is called the fuel value of the substance.
A) 1 kJ
B) 1 kg
C) 1 lb
D) 1 J
E) 1 g

back 37

E

front 38

Fuel values of hydrocarbons increase as the ________ increases.
A) C atomic ratio
B) H/C atomic ratio
C) H atomic ratio
D) C/C atomic ratio
E) C/H atomic ratio

back 38

B

front 39

________ yields the highest fuel value.
A) hydrogen
B) charcoal
C) bituminous coal
D) natural gas
E) wood

back 39

A

front 40

All of the following are considered fossil fuels except ________.
A) hydrogen
B) anthracite coal
C) crude oil
D) natural gas
E) petroleum

back 40

A

front 41

The most abundant fossil fuel is ________.
A) natural gas
B) petroleum
C) coal
D) uranium
E) hydrogen

back 41

C

front 42

Calculate the kinetic energy in J of an electron moving at 6.00 × 106 m/s. The mass of an electron is 9.11 × 10-28 g.
A) 4.98 × 10-48 J
B) 3.28 × 10-14 J
C) 1.64 × 10-17 J
D) 2.49 × 10-48 J
E) 6.56 × 10-14 J

back 42

C

front 43

Calculate the kinetic energy in joules of an automobile weighing 2135 lb and traveling at 55 mph.
A) 1.2 × 104 J
B) 2.9 × 105 J
C) 5.9 × 105 J
D) 3.2 × 106 J
E) 3.2 × 10-6 J

back 43

B

front 44

Calculate the kinetic energy in joules of an automobile weighing 4345 lb and traveling at 75 mph.
A) 5.5 × 105 J
B) 5.5 × 10-5 J
C) 1.1 × 106 J
D) 2.2 × 106 J
E) 2.2 × 10-6 J

back 44

C

front 45

The kinetic energy of a 7.3 kg steel ball traveling at 18.0 m/s is ________ J.
A) 1.2 × 103
B) 66
C) 2.4 × 103
D) 1.3 × 102
E) 7.3

back 45

A

front 46

The kinetic energy of a 10.3 g golf ball traveling at 48.0 m/s is ________ J.
A) 1.20 × 103
B) 66
C) 11.9
D) 1.3 × 102
E) 23.7

back 46

C

front 47

Calculate the kinetic energy in joules of a 150 lb jogger (68.1 kg) traveling at 12.0 mile/hr (5.36 m/s).
A) 1.96 × 103 J
B) 365 J
C) 978 J
D) 183 J
E) 68.1 J

back 47

C

front 48

What is the kinetic energy of a 55.2 g object moving at 135 m/s.
A) 503 J
B) 5.03 × 105 J
C) 1.01 × 103 J
D) 3.73 J
E) 3.73 × 103 J

back 48

A

front 49

The kinetic energy of a 23.2-g object moving at a speed of 81.9 km/hr is ________ J.
A) 1900
B) 77.8
C) 145
D) 1.43 × 10-3
E) 6.00

back 49

E

front 50

What is the kinetic energy of a 145 g baseball traveling at 89.9 mi/hr?
A) 1.17 × 105 J
B) 2.91 J
C) 234 J
D) 5.83
E) 117 J

back 50

E

front 51

A 100-watt electric incandescent light bulb consumes ________ J of energy in 24 hours. [1 Watt (W) = 1 J/sec]
A) 2.40 × 103
B) 8.64 × 103
C) 4.17
D) 2.10 × 103
E) 8.64 × 106

back 51

E

front 52

The ΔE of a system that releases 12.4 J of heat and does 4.2 J of work on the surroundings is ________ J.
A) 16.6
B) 12.4
C) 4.2
D) -16.6
E) -8.2

back 52

D

front 53

The ΔE of a system that absorbs 12.4 J of heat and does 4.2 J of work on the surroundings is ________ J.
A) 16.6
B) 12.4
C) 4.2
D) -16.6
E) 8.2

back 53

E

front 54

The change in the internal energy of a system that absorbs 2,500 J of heat and that does 7,655 J of work on the surroundings is ________ J.
A) 10,155
B) 5,155
C) -5,155
D) -10,155
E) 1.91 × 107

back 54

C

front 55

The change in the internal energy of a system that releases 2,500 J of heat and that does 7,655 J of work on the surroundings is ________ J.
A) -10,155
B) -5,155
C) -1.91 × 107
D) 10,155
E) 5,155

back 55

A

front 56

Hydrogen gas and bromine gas react to form hydrogen bromide gas. How much heat (kJ) is released when 155 grams of HBr is formed in this reaction? ΔH° = -72 kJ.
A) 137
B) 69
C) -69
D) -137
E) 1.12 × 105

back 56

B

front 57

The value of ΔH° for the reaction below is -126 kJ. ________ kj are released when 2.00 mol of NaOH is formed in the reaction?

2Na2O2 (s) + 2H2O (l) → 4NaOH (s) + O2 (g)

A) 252
B) 63
C) 3.9
D) 7.8
E) -126

back 57

B

front 58

The value of ΔH° for the reaction below is -790 kJ. The enthalpy change accompanying the reaction of 0.95 g of S is ________ kJ.
2S (s) + 3O2 (g) → 2SO3 (g)

A) 23
B) -23
C) -12
D) 12
E) -790

back 58

C

front 59

The value of ΔH° for the reaction below is -6535 kJ. ________ kJ of heat are released in the combustion of 16.0 g of (l)?
2C6H6 (l) + 15O2 (g) → 12CO2 (g) + 6H2O (l)

A) 1.34 × 103
B) 5.23 × 104
C) 669
D) 2.68 × 103
E) -6535

back 59

C

front 60

Carbon monoxide and oxygen gas react to form carbon dioxide. How much heat is released when 89.5 grams of O2 (g) reacts with excess CO? ΔH° = -482 kJ.
A) 1.35 × 103 kJ
B) 2.70 × 103 kJ
C) 1.35 × 10-3 kJ
D) 674 kJ
E) 4.31 × 104 kJ

back 60

A

front 61

The value of ΔH° for the reaction below is -336 kJ. Calculate the heat (kJ) released to the surroundings when 23.0 g of HCl is formed.

CH4 (g) + 3Cl2 (g) → CHCl3 (l) + 3HCl (g)

A) 177 kJ
B) 2.57 × 103 kJ
C) 70.7 kJ
D) 211 kJ
E) -336 kJ

back 61

C

front 62

How much heat is released when 29.5 grams of Cl2 (g) reacts with excess hydrogen?

H2 (g) + Cl2 (g) → 2HCl (g) ΔH° = -186 kJ.

A) 186 kJ
B) 310 kJ
C) -77.4 kJ
D) -186 kJ
E) 77.4 kJ

back 62

E

front 63

The enthalpy change for the following reaction is -483.6 kJ:

2H2 (g) + O2 (g) → 2H2O (g)

Therefore, the enthalpy change for the following reaction is ________ kJ.
4H2 (g) + 2O2 (g) → 4H2O (g)
A) -483.6
B) -967.2
C) 2.34 × 105
D) 483.6
E) 967.2

back 63

B

front 64

The value of ΔH° for the reaction below is +128.1 kJ:

CH3OH (l) → CO (g) + 2H2 (g)
How many kJ of heat are consumed when 15.5 g of C OH (l) decomposes as shown in the equation?
A) 0.48 kJ
B) 62.0 kJ
C) 1.3 × 102 kJ
D) 32 kJ
E) 8.3 kJ

back 64

B

front 65

The value of ΔH° for the reaction below is +128.1 kJ:

CH3OH (l) → CO (g) + 2H2 (g)
How much heat is consumed when 87.1 g of hydrogen gas is formed?
A) 2.76 × 103 kJ
B) 5.52 × 103 kJ
C) -5.52 × 103 kJ
D) -2.76 × 103 kJ
E) -128.1 kJ

back 65

A

front 66

The value of ΔH° for the reaction below is +128.1 kJ:

CH3OH (l) → CO (g) + 2H2 (g)
How many kJ of heat are consumed when 5.10 g of CO (g) is formed as shown in the equation?
A) 0.182 kJ
B) 162 kJ
C) 8.31 kJ
D) 23.3 kJ
E) 62.0 kJ

back 66

D

front 67

CH3OH (l) decomposes into carbon monoxide and hydrogen gas in the presence of heat. How much heat is consumed when 5.75 g of CO (g) is formed? ΔH° = +128.1 kJ.
A) 26.3 kJ
B) 23.3 kJ
C) 62.0 kJ
D) 162 kJ
E) 8.3 kJ

back 67

A

front 68

The value of ΔH° for the reaction below is -1107 kJ:

2Ba (s) + O2 (g) → 2BaO (s)
How many kJ of heat are released when 5.75 g of Ba (s) reacts completely with oxygen to form
A) 96.3 kJ
B) 26.3 kJ
C) 46.4 kJ
D) 23.2 kJ
E) 193 kJ

back 68

D

front 69

The value of ΔH° for the reaction below is -1107 kJ:

2Ba (s) + O2 (g) → 2BaO (s)
How many kJ of heat are released when 5.75 g of BaO (s) is produced?
A) 56.9 kJ
B) 23.2 kJ
C) 20.8 kJ
D) 193 kJ
E) 96.3 kJ

back 69

C

front 70

How many kJ of heat are released when 15.75 g of Ba (s) reacts completely with oxygen gas to form BaO (s)? ΔH° = -1107 kJ.
A) 63.5 kJ
B) 20.8 kJ
C) 114 kJ
D) 70.3 kJ
E) 35.1 kJ

back 70

A

front 71

The molar heat capacity of an unknown substance is 92.1 J/mol-K. If the unknown has a molar mass of 118 g/mol, what is the specific heat (J/g-K) of this substance?
A) 1.28
B) -92.1
C) 1.09 × 104
D) 0.781
E) 92.1

back 71

D

front 72

The specific heat capacity of lead is 0.13 J/g-K. How much heat (in J) is required to raise the temperature of of lead from 22 °C to 37 °C?
A) 2.0 J
B) -0.13 J
C) 5.8 × 10-4 J
D) 29 J
E) 0.13 J

back 72

D

front 73

The temperature of a 15-g sample of lead metal increases from 22 °C to 37 °C upon the addition of 29.0 J of heat. The specific heat capacity of the lead is ________ J/g-K.
A) 7.8
B) 1.9
C) 29
D) 0.13
E) -29

back 73

D

front 74

What is the molar heat capacity (in J/mol-K) of liquid bromine? The specific heat of liquid bromine is 0.226 J/g-K.
A) 36.1 J/mol-K
B) 707 J/mol-K
C) 18.1 J/mol-K
D) 9.05 J/mol-K
E) 0.226 J/mol-K

back 74

A

front 75

The specific heat of liquid bromine is 0.226 J/g-K. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from 25.00 °C to 27.30 °C? The density of liquid bromine: 3.12 g/mL.
A) 5.20 J
B) 16.2 J
C) 300 J
D) 32.4 J
E) 10.4 J

back 75

B

front 76

ΔH for the reaction

IF5 (g) → IF3 (g) + F2 (g)

is ________ kJ, given the data below.
IF (g) + F2 (g) → IF3 (g) ΔH = -390 kJ

IF (g) + 2F2 (g) → IF5 (g) ΔH = -745 kJ

A) +355
B) -1135
C) +1135
D) +35
E) -35

back 76

A

front 77

Given the following reactions
Fe2O3 (s) + 3CO (s) → 2Fe (s) + 3CO2 (g) ΔH = -28.0 kJ

3Fe (s) + 4CO2(s) → 4CO (g) + Fe3O4(s) ΔH = +12.5 kJ

the enthalpy of the reaction of Fe2O3 with CO
3Fe2O3 (s) + CO (g) → CO2 (g) + 2Fe3O4 (s)

is ________ kJ.
A) -59.0
B) 40.5
C) -15.5
D) -109
E) +109

back 77

A

front 78

Given the following reactions
N2 (g) + 2O2 (g) → 2NO2 (g) ΔH = 66.4 kJ

2NO (g) + O2 (g) → 2NO2 (g) ΔH = -114.2 kJ
the enthalpy of the reaction of the nitrogen to produce nitric oxide
N2 (g) + O2 (g) → 2NO (g)

is ________ kJ.
A) 180.6
B) -47.8
C) 47.8
D) 90.3
E) -180.6

back 78

A

front 79

Given the following reactions
2NO → N2 + O2 ΔH = -180 kJ

2NO + O2 → 2NO2 ΔH = -112 kJ

the enthalpy of the reaction of nitrogen with oxygen to produce nitrogen dioxide

N2 + 2O2 → 2NO2

is ________ kJ.
A) 68
B) -68
C) -292
D) 292
E) -146

back 79

A

front 80

Given the following reactions
2S (s) + 3O2 (g) → 2SO3 (g) ΔH = -790 kJ

S (s) + O2 (g) → SO2(g) ΔH = -297 kJ

the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide

2SO2 (g) + O2 (g) → 2SO3 (g)

is ________ kJ.
A) 196
B) -196
C) 1087
D) -1384
E) -543

back 80

B

front 81

Given the following reactions
CaCO3 (s) → CaO (s) + CO2 (g) ΔH = 178.1 kJ
C (s, graphite) + O2(g) → CO2(g) ΔH = -393.5 kJ
the enthalpy of the reaction
CaCO3 (s) → CaO (s) + C (s, graphite) + O2 (g)

is ________ kJ.
A) 215.4
B) 571.6
C) -215.4
D) -571.6
E) 7.01 × 104

back 81

B

front 82

Given the following reactions
H2O (l) → H2O (g) ΔH = 44.01 kJ
2H2 (g) + O2 (g) → 2H2O (g) ΔH = -483.64 kJ
the enthalpy for the decomposition of liquid water into gaseous hydrogen and oxygen
2H2O (l) → 2H2 (g) + O2 (g)

is ________ kJ.
A) -395.62
B) -527.65
C) 439.63
D) 571.66
E) 527.65

back 82

D

front 83

Given the following reactions

N2 (g) + O2 (g) → 2NO (g) ΔH = +180.7 kJ
2NO( g) + O2 (g) → 2NO2 (g) ΔH = -113.1 kJ
the enthalpy for the decomposition of nitrogen dioxide into molecular nitrogen and oxygen
2NO2 (g) → N2 (g) + 2O2 (g)

is ________ kJ.
A) 67.6
B) -67.6
C) 293.8
D) -293.8
E) 45.5

back 83

B

front 84

Given the following reactions
N2 (g) + O2 (g) → 2NO (g) ΔH = +180.7 kJ
2NO (g) + O2(g) → 2N (g) ΔH = -113.1 kJ
the enthalpy of reaction for
4NO (g) → 2NO2 (g) + N2 (g)

is ________ kJ.
A) 67.6
B) 45.5
C) -293.8
D) -45.5
E) 293.8

back 84

C

front 85

Given the following reactions
N2 (g) + O2 (g) → 2NO (g) ΔH = +180.7 kJ
2N2O (g) → O2 (g) + 2N2 (g) ΔH = -163.2 kJ
the enthalpy of reaction for
2N2O (g) → 2NO (g) + N2 (g)

is ________ kJ.
A) 145.7
B) 343.9
C) -343.9
D) 17.5
E) -145.7

back 85

D

front 86

The value of ΔH° for the reaction below is -186 kJ.
H2 (g) + Cl2 (g) → 2HCl (g)

The value of ΔH°f for HCl (g) is ________ kJ/mol.
A) -3.72 × 102
B) -1.27 × 102
C) -93.0
D) -186
E) +186

back 86

C

front 87

The value of ΔH° for the following reaction is -3351 kJ:
2Al (s) + 3O2(g) → 2Al2O3(s)
The value of ΔH°f for Al2 (s) is ________ kJ.
A) -3351
B) -1676
C) -32.86
D) -16.43
E) +3351

back 87

B

front 88

Given the data in the table, ΔH°rxn for the reaction

Ca(OH)2 + 2H3AsO4 → Ca(H2AsO4)2 + 2H2O

is ________ kJ.

A) -744.9
B) -4519
C) -4219
D) -130.4
E) -76.4

back 88

D

front 89

Given the data in the table, ΔH°rxn for the reaction

4NH3 (g) + 5O2 (g) → 4NO (g) + 6H2O (l)

is ________ kJ.

A) -1172
B) -150
C) -1540
D) -1892
E) The ΔH°f of O2 (g) is needed for the calculation.

back 89

A

front 90

Given the data in the table, ΔH°rxn for the reaction
C2H5OH (l) + O2 (g) → CH3CO2H (l) + H2O (l)

is ________ kJ.

A) -79.0
B) -1048.0
C) -476.4
D) -492.6
E) The value of ΔH°f of O2 (g) is required for the calculation.

back 90

D

front 91

Given the data in the table, ΔH°rxn for the reaction
3NO2 (g) + H2O (l) → 2HNO3 (aq) + NO (g)

is ________ kJ.

A) 64
B) 140
C) -140
D) -508
E) -64

back 91

C

front 92

Given the data in the table, ΔH°rxn for the reaction

IF5 (g) + F2 (g) → IF7 (g)

is ________ kJ.

A) 1801
B) -1801
C) 121
D) -121
E) -101

back 92

E

front 93

Given the data in the table, ΔH° for the reaction
2CO (g) + O2 (g) → 2CO2 (g)

is ________ kJ.

A) -566.4
B) -283.2
C) 283.2
D) -677.0
E) The ΔH°f of O2 (g) is needed for the calculation.

back 93

A

front 94

The value of ΔH° for the following reaction is 177.8 kJ. The value of Δ for CaO(s) is ________ kJ/mol.
CaCO3 (s) → CaO (s) + CO2 (g)

A) -1600
B) -813.4
C) -635.5
D) 813.4
E) 177.8

back 94

C

front 95

Given the data in the table, ΔH°rxn for the reaction
2Ag2S (s) + O2 (g) → 2Ag2O (s) + 2S (s)

is ________ kJ.

A) -1.6
B) +1.6
C) -3.2
D) +3.2
E) The ΔH°f of S (s) and of O2 (g) are needed for the calculation.

back 95

D

front 96

Given the data in the table, ΔH°rxn for the reaction
Ag2O (s) + H2S (g) → Ag2S (s) + H2O (l)

is ________ kJ.

A) -267
B) -370
C) -202
D) -308
E) More data are needed to complete the calculation.

back 96

A

front 97

Given the data in the table, ΔH°rxn for the reaction
2SO2 (g) + O2 (g) → 2SO3 (g)

is ________ kJ.

A) -99
B) 99
C) -198
D) 198
E) The ΔH°f of O2 (g) is needed for the calculation.

back 97

C

front 98

Given the data in the table, ΔH°rxn for the reaction
SO3 (g) + H2O (l) → H2SO4 (l)

is ________ kJ.

A) -132
B) 1496
C) 704
D) -704
E) -2.16 × 103

back 98

A

front 99

Given the data in the table, ΔH°rxn for the reaction
3Cl2 (g) + PH3 (g) → PCl3 (g) + 3HCl (g)

is ________ kJ.

A) -385.77
B) -570.37
C) 570.37
D) 385.77
E) The ΔH°f of Cl2 (g) is needed for the calculation.

back 99

B

front 100

Given the data in the table, ΔH°rxn for the reaction
PCl3 (g) + 3HCl (g) → 3Cl2 (g) + PH3 (g)

is ________ kJ.

A) -570.37
B) -385.77
C) 570.37
D) 385.77
E) The ΔH°f of Cl2 (g) is needed for the calculation.

back 100

C

front 101

Given the data in the table and ΔH°rxn for the reaction
SO2Cl2 (g) + 2H2O (l) → H2SO4 (l) + 2HCl (g) ΔH° = -62 kJ

ΔH°f of HCl (g) is ________ kJ/mol.

A) -184
B) 60
C) -92
D) 30
E) Insufficient data are given.

back 101

C

front 102

A 19.5 g candy bar contains 8% protein, 33% fat, and 18% carbohydrate. The respective fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively. What is the fuel value (kJ) for this piece of candy?
A) 241
B) 331
C) 27
D) 60.0
E) 17.0

back 102

B

front 103

A 3.00 L pitcher of sweetened ice tea contains 600. g of sugar. Assuming that the sugar is the only fuel source, what is the fuel value (in kJ) of a 250. mL serving? The respective fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively.
A) 8.50 × 102 kJ
B) 10.2 × 104 kJ
C) 2.55 × 103 kJ
D) 38 kJ
E) 17 kJ

back 103

A

front 104

A typical fast food meal consists of a burger, fries, and a soft-drink and contains 58.0 grams of fat, 39.0 grams of protein, and 177 grams of carbohydrate. If jogging burns 950.0 kJ/hour, how many minutes would it take to completely burn off the meal? The respective fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively.
A) 6.19
B) 208
C) 371
D) 17.3
E) 9.70

back 104

C

front 105

A slice of cake contains 29.0 grams of fat, 9.0 grams of protein, and 77 grams of carbohydrate. If swimming burns 1000.0 kJ/hour, how many minutes would it take to completely burn off the slice of cake? The respective fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively.
A) 154
B) 2.56
C) 23.4
D) 117
E) 262

back 105

A

front 106

A 26.9 g rock rolls down the hill at a speed of 81.9 m/s . What is the kinetic energy of the rock?
A) 90.2 J
B) 145 J
C) 0.950 J
D) 90200 J
E) 1450 J

back 106

A

front 107

A 23.2 g piece of space debris is traveling at 81.9 m/s. What is the kinetic energy of the space debris?
A) 145 J
B) 1450 J
C) 0.950 J
D) 77800 J
E) 77.8 J

back 107

E

front 108

At what velocity (m/s) must a object be moving in order to possess a kinetic energy of 1.0J?
A) 0.35 m/s
B) 2.8 m/s
C) 0.13 m/s
D) 0.031 m/s
E) 0.016 m/s

back 108

A

front 109

At what velocity (m/s) must a 417.3 g object be moving in order to possess a kinetic energy of 3.2J?
A) 0.12 m/s
B) 26 m/s
C) 0.015 m/s
D) 0.0038 m/s
E) 0.00024 m/s

back 109

A

front 110

When work is done on a system, w will be a ________ value.
A) positive
B) negative
C) very large
D) very small
E) There is not enough information given to determine the answer.

back 110

A

front 111

The value of ΔE for a system that performs 139 kJ of work on its surroundings and gains of heat is ________ kJ.
A) -85
B) 193
C) 7506
D) 85
E) -193

back 111

A

front 112

The value of ΔE for a system that performs 19 kJ of work on its surroundings and loses of heat is ________ kJ.
A) -28
B) 28
C) 171
D) 10
E) -10

back 112

A

front 113

Calculate the work (kJ) done during a reaction in which the internal volume expands from to against an outside pressure of 2.5atm.
A) -7.3 kJ
B) 17 kJ
C) 7.3 kJ
D) -17 kJ
E) 0 kJ; No work is done.

back 113

A

front 114

Calculate the work (kJ) done during a reaction in which the internal volume expands from to against a vacuum (an outside pressure of 0 atm).
A) 0; kJ No work is done.
B) 3.6 kJ
C) -3.6 kJ
D) 6.5 kJ
E) -6.5 kJ

back 114

A

front 115

Calculate the work (kJ) done during a reaction in which the internal volume contracts from to against an outside pressure of 4.4 atm.
A) 31 kJ
B) 43 kJ
C) -31 kJ
D) -43 kJ
E) 0 kJ; No work is done.

back 115

A

front 116

The value of ΔE for a system that performs 151 kJ of work on its surroundings and loses 79 kJ of heat is ________ kJ.
A) +230.
B) -230.
C) +72
D) -72
E) -151

back 116

B

front 117

Calculate the value of ΔE in joules for a system that loses 115 J of heat and has 150 J of work performed on it by the surroundings.
A) -115 J
B) -35 J
C) +35 J
D) +265 J
E) -265 J

back 117

C

front 118

The value of ΔH° for the reaction below is -72 kJ. ________ kJ of heat are released when 5.5 mol of HBr is formed in this reaction.

H2 (g) + Br2 (g) → 2HBr (g)

A) 144
B) 72
C) 0.44
D) 198
E) -72

back 118

D

front 119

The value of ΔH° for the reaction below is -126 kJ. The amount of heat that is released by the reaction of 10.0 g of Na2O2 with water is ________ kJ.

2Na2O2 (s) + 2H2O (l) → 4NaOH (s) + O2 (g)

A) 8.08
B) 16.2
C) 67.5
D) 32.3
E) -126

back 119

A

front 120

The value of ΔH° for the reaction below is -482 kJ. Calculate the heat (kJ) released to the surroundings when 10.0 g of CO (g) reacts completely.
2CO (g) + O2 (g) → 2CO2 (g)

A) 2410 kJ
B) 172 kJ
C) 86.0 kJ
D) 482 kJ
E) -482 kJ

back 120

C

front 121

In the presence of excess oxygen, methane gas burns in a constant-pressure system to yield carbon dioxide and water:

CH4 (g) + 2O2 (g) → CO2 (g) + 2H2O (l) △H = -890.0 kJ

Calculate the value of q (kJ) in this exothermic reaction when 1.80 g of methane is combusted at constant pressure.
A) -100.1 kJ
B) 0.0324 kJ
C) -0.0100 kJ
D) 30.9 kJ
E) -1.00 × 105 kJ

back 121

A

front 122

Hydrogen peroxide decomposes to water and oxygen at constant pressure (△H = -196 kJ). What is the value of q (kJ) for this reaction when 4.60 g of hydrogen peroxide decomposes at constant pressure?
A) -26.5 kJ
B) -0.0189 kJ
C) 1.25 kJ
D) -2.65 × 104 kJ
E) -13.3 kJ

back 122

E

front 123

The combustion of titanium with oxygen produces titanium dioxide:

Ti (s) + O2(g) → TiO2 (s)

When 0.610 g of titanium is combusted in a bomb calorimeter, the temperature of the calorimeter increases from 25.00 °C to 50.50 °C. In a separate experiment, the heat capacity of the calorimeter is measured to be 9.84 kJ/K. The heat of reaction for the combustion of a mole of Ti in this calorimeter is ________ kJ/mol.
A) 2.09
B) 4.14
C) -311
D) -0.154
E) -1.98 × 104

back 123

E

front 124

A sample of aluminum metal absorbs 11.2 J of heat, upon which the temperature of the sample increases from 23.2 °C to 30.5 °C. Since the specific heat capacity of aluminum is 0.90 J/g-K, the mass of the sample is ________ g.
A) 72
B) 1.7
C) 10.
D) 65
E) 7.3

back 124

B

front 125

A sample of calcium carbonate [CaCO3 (s)] absorbs of heat, upon which the temperature of the sample increases from 20.8 °C to 27.3 °C. If the specific heat of calcium carbonate is what is the mass (in grams) of the sample?
A) 7.6 g
B) 5.1 g
C) -7.6 g
D) 0.13 g
E) 5.3 g

back 125

A

front 126

How many joules of heat are absorbed when the temperature of a 13.9 g sample of CaCO3 (s) increases from 21.7 °C to 33.3 °C? Specific heat of calcium carbonate is 0.82 J/g-K.
A) 130 J
B) 0.68 J
C) s-130 J
D) -0.68 J
E) 9.5 J

back 126

A

front 127

An 6.11 g sample of calcium carbonate [CaCO3 (s)] absorbs of heat, upon which the temperature of the sample increases from 19.2 °C to 35.9 °C. What is the specific heat of calcium carbonate?
A) 0.82 J/g-K
B) -0.82 J/g-K
C) 31 J/g-K
D) 230 J/g-K
E) 8600 J/g-K

back 127

A

front 128

A sample of iron absorbs 81.0 J of heat, upon which the temperature of the sample increases from 19.7 °C to 28.2 °C. If the specific heat of iron is 0.450 J/g-K, what is the mass (in grams) of the sample?
A) 21.2 g
B) 4.29 g
C) -21.2 g
D) 0.0472 g
E) 3.83 g

back 128

A

front 129

The temperature of a 35.1 g sample of iron increases from 24.6 °C to 31.8 °C If the specific heat of iron is 0.450 J/g-K, how many joules of heat are absorbed?
A) 115 J
B) 0.0936 J
C) -115 J
D) 0.722 J
E) 3.29 J

back 129

A

front 130

A 22.9 g sample of iron absorbs 155 J of heat, upon which the temperature of the sample increases from 23.9 °C to 38.9 °C. What is the specific heat of iron?
A) 0.451 J/g-K
B) -0.451 J/g-K
C) 237 J/g-K
D) 102 J/g-K
E) 53,200 J/g-K

back 130

A

front 131

The specific heat capacity of liquid water is 4.18 J/g-K. How many joules of heat are needed to raise the temperature of 7.25 g of water from 20.0 °C to 44.1 °C?
A) 41.8 J
B) 730 J
C) 1.94 × 103 J
D) 2.39 × 10-2 J
E) 66.8 J

back 131

B

front 132

The specific heat capacity of methane gas is 2.20 J/g-K. How many joules of heat are needed to raise the temperature of 7.25 g of methane from 22.0 °C to 57.0 °C?
A) 115 J
B) 558 J
C) 1.26 × 103 J
D) 8.67 × 10-3 J
E) 41.3 J

back 132

B

front 133

The specific heat capacity of liquid mercury is 0.14 J/g-K. How many joules of heat are needed to raise the temperature of 6.00 g of mercury from 25.1 °C to 65.3 °C?
A) 1.7 × 103 J
B) 34 J
C) 76 J
D) 5.8 × 10-4 J
E) 2.2 J

back 133

B

front 134

How much heat is required to raise the temperature of a 1.15 kg piece of copper metal from 25.0 °C to 77.5 °C? The specific heat capacity of solid copper metal is 0.385 J/g-K.
A) 2.32 × 104 J
B) 1.57 × 105 J
C) 23.2 J
D) 6.38 × 10-6 J
E) 0.00638 J

back 134

A

front 135

A 4.50-g sample of liquid water at 25.0 °C is heated by the addition of 133 J of energy. The final temperature of the water is ________ °C. The specific heat capacity of liquid water is 4.18 J/g-K.
A) 149
B) 25.1
C) -17.9
D) 32.1
E) 7.07

back 135

D

front 136

A 10.1 g sample of NaOH is dissolved in 250.0 g of water in a coffee-cup calorimeter. The temperature increases from 23.0 °C to ________°C. Specific heat of liquid water is 4.18 J/g-K and ΔH for the dissolution of sodium hydroxide in water is 44.4 kJ/mol.
A) 35.2
B) 24.0
C) 33.7
D) 33.3
E) 40.2

back 136

D

front 137

A 50.0-g sample of liquid water at 25.0 °C is mixed with 23.0 g of water at 79.0 °C. The final temperature of the water is ________ °C.
A) 123
B) 27.3
C) 52.0
D) 231
E) 42.0

back 137

E

front 138

A 5.00-g sample of copper metal at 25.0 °C is heated by the addition of 133 J of energy. The final temperature of the copper is ________ °C. The specific heat capacity of copper is
A) 35.1
B) 25.0
C) 45.0
D) 95.0
E) 70.0

back 138

D

front 139

The temperature of a 24.3 g sample of gold increases from 23.7 °C to 31.5 °C. If the specific heat of gold is 0.129 J/g-K, how many joules of heat are absorbed?
A) 24.5 J
B) 0.0414 J
C) -24.5 J
D) 0.293 J
E) 1.01 J

back 139

A

front 140

What is the enthalpy change (in kJ) of a chemical reaction that raises the temperature of 250.0 mL of solution having a density of 1.25 g/mL by 3.33 °C? (The specific heat of the solution is 3.74 J/g-K.)
A) -7.43 kJ
B) -12.51 kJ
C) 8.20 kJ
D) -3.89 kJ
E) 6.51 kJ

back 140

D

front 141

An 8 oz. bottle of energy drink contains 6.0 g of protein, 2.0 g of fat, and 16.3 g of carbohydrate. The fuel value of this energy drink bottle is ________ kJ. The fuel values for protein, fat, and carbohydrate are 17, 38, and 17 kJ/g, respectively.
A) 520
B) 280
C) 720
D) 460
E) 72

back 141

D

front 142

________ is defined as the energy used to move an object against a force.

back 142

Work

front 143

The ΔHvap of water is 40.7 kJ at 100 °C. How much liquid water in grams can be converted to vapor if 5950 J of heat are absorbed?

back 143

2.63 grams

front 144

The ΔHvap of water is 40.7 kJ at 100 °C. How much heat energy is required to convert 15.0 grams of liquid water to vapor.

back 144

33.9 kJ

front 145

When 0.800 grams of NaOH is dissolved in 100.0 grams of water, the temperature of the solution increases from 25.00 °C to 27.06 °C. The amount of heat absorbed by the water is ________ J. (The specific heat of water is 4.18 J/g-°C.)

back 145

868

front 146

The ΔHrxn for the combustion of methane is -890.0 kJ. How much heat energy (kJ) is released if 82.1 grams of methane are burned in an excess amount of oxygen?

back 146

4555 kJ

front 147

The ________ of a reaction is the enthalpy change when all reactants and products are at 1 atm pressure and a specific temperature.

back 147

standard enthalpy change

front 148

Coal contains hydrocarbons of high molecular weight as well as compounds containing ________, sulfur, or nitrogen.

back 148

oxygen

front 149

Work equals mass times distance.

back 149

false

front 150

One joule equals 1 kg-m2/s2.

back 150

true

front 151

Energy units include watts, volts, and newtons.

back 151

false

front 152

The primary component of natural gas is methane.

back 152

true

front 153

Renewable energy sources are essentially exhaustible.

back 153

false

front 154

Petroleum is a liquid that can be refined to produce fuels such as gasoline, diesel oil, and kerosene.

back 154

true