##### Final

Formulas

Attenuation

Axial resolution

bandwidth

Density

DF 3

Distance

Doppler Shift

Element thickness

Focus width

fractional bandwidth

Frequency

impedance

Intensity

IRC

Lateral Resolution

Matching layer thickness

NZL Formula

PA

Pd 2

Poiseuille's equation

Pressure

pressure above the heart

Q factor

Refraction transmission angle

Reynolds #

SPL 2

TA

Volumetric flow rate formula

wavelength

Frequency

Frequency = n/sec = Hz

SPL _{2}

SPL = n * λ

SPL = n * c/f

Pd _{2}

pd = n * period

pd = n / f

Matching layer thickness

thickness = .25λ

Attenuation

Attenuation = 1/2 * f (MHz) * pathlength cm

Distance

d = 1/2 ct

Axial resolution

R_{A} = 1/2 SPL

Focus width

1/2 element thickness

Element thickness

1/2 λ

wavelength

λ = c/f

Density

d = m/v

Pressure

p = F/A

PA

PA = TA/DF

TA

TA = DF * PA

DF _{3}

DF = TA/PA

DF - pd(μs)/PRP(μs)

DF = pd(μs) * PRF (μs)

Intensity

Intensity = Power (W) / area (cm^{2})

IRC

IRC = reflected/incident

IRC = (z_{2}
-z_{1}) / (z_{2} +z_{1})

impedance

impedance = density * c

bandwidth

bandwidth = f_{max} - f_{min}

fractional bandwidth

fractional bandwidth = bandwidth/f_{O}

Q factor

Q_{f} = f_{O}/bandwidth

Volumetric flow rate formula

Flow rate = V/t

pressure above the heart

above = CP - HP

Lateral Resolution

R_{L} = Beamwidth

NZL Formula

(D^{2} * f) / 6

Doppler Shift

FD = (2 V * cos*0* * f_{0})/c

Reynolds #

R# = (average flow speed * diameter * density) / viscosity

Poiseuille's equation

flow = pressure*diameter/ strength*viscosity

steady flow
in a long straight tube

Refraction transmission angle

New angle = (New c / Old c) * old angle